
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

A complete formal semantics of eBPF instruction set architecture for Solana

SHENGHAO YUAN , Zhejiang University, China

ZHUORUO ZHANG , Zhejiang University, China

JIAYI LU , Zhejiang University, China

DAVID SANAN , InfoComm Technology Cluster, Singapore Institute of Technology, Singapore

RUI CHANG , Zhejiang University, China

YONGWANG ZHAO , Zhejiang University, China

We present the first and most comprehensive formal semantics for the Solana eBPF bytecode language used in smart contracts on the

Solana blockchain platform. Our formalization accurately captures all binary-level instructions of the Solana eBPF instruction set

architecture. This semantics is structured in a small-step style, facilitating the formalization of the Solana eBPF interpreter within

Isabelle/HOL. We provide a semantics validation framework that extracts an executable semantics from our formalization to test

against the original implementation of the Solana eBPF interpreter. This approach introduces a novel lightweight and non-invasive

method to relax the limitations of the existing Isabelle/HOL extraction mechanism. Furthermore, we illustrate potential applications of

our semantics in the formalization of the main components of the Solana eBPF virtual machine.

Additional Key Words and Phrases: eBPF, ISA, Semantics, Virtual Machine, Solana Blockchain, Formal Verification, Isabelle/HOL

1 Introduction

Blockchain technology is inherently safety-critical, where even subtle issues may lead to significant consequences.

To ensure safety and most importantly, provide trustworthiness of their platforms to investors/users, blockchain

communities advocate for the use of formal methods, i.e., the rigorous mathematical techniques aimed at proving the

absence of bugs in software. The formal semantics of blockchain languages, spanning from high-level smart contract

languages to low-level virtual instruction set architectures (ISAs) of blockchain virtual machines (VMs), serve as a

crucial foundation for accurately describing the intricate behaviours of blockchain platforms. Existing work on formal

semantics includes Ethereum Virtual Machine (EVM) [Amani et al. 2018; Cassez et al. 2023; Hildenbrandt et al. 2018;

Hirai 2017; Li et al. 2019], Solidity [Jiao et al. 2020; Marmsoler and Brucker 2021], Azure Blockchain [Wang et al. 2019],

and many other related formal applications, e.g., verified EVM verifier [Park et al. 2018], verification of Deposit smart

contract [Park et al. 2020], the move prover [Zhong et al. 2020], verified EVM block-optimization [Albert et al. 2023],

and the symbolic execution tool HEVM [Dxo et al. 2024], etc.

Solana, a third-generation blockchain platform, is recognized for its high performance and lower transaction fees.

It employs Linux eBPF sandboxing techniques to implement its VM for executing Solana smart contracts. Despite

the entire VM [Solana-labs 2018] being developed in the memory-safe language Rust, a security review by Kudelski

Authors’ Contact Information: Shenghao Yuan , Zhejiang University, China; Zhuoruo Zhang , Zhejiang University, China; Jiayi Lu , Zhejiang University,

China; David Sanan , InfoComm Technology Cluster, Singapore Institute of Technology, Singapore; Rui Chang , Zhejiang University, China; Yongwang

Zhao , Zhejiang University, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://orcid.org/0000-0002-8467-5827
https://orcid.org/0000-0001-7896-1694
https://orcid.org/0009-0000-0035-7251
https://orcid.org/0000-0003-2755-3089
https://orcid.org/0000-0002-0178-0171
https://orcid.org/0000-0002-2284-1383
https://orcid.org/0000-0002-8467-5827
https://orcid.org/0000-0001-7896-1694
https://orcid.org/0009-0000-0035-7251
https://orcid.org/0000-0003-2755-3089
https://orcid.org/0000-0002-0178-0171
https://orcid.org/0000-0002-2284-1383

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Shenghao Yuan et al.

Security [Security 2019] highlights that the Rust implementation of the Solana eBPF VM remains unverified and

lacks thorough code analysis and testing. Recent findings have already uncovered serious vulnerabilities within the

Solana eBPF VM, including infinite loops in instruction fuel consumption [BoredPerson 2024] and call-out-of-branch

issues [Solana-labs 2024]. Current research on Solana primarily focuses on detecting vulnerabilities at the smart contract

level [Cui et al. 2022] and fuzzing techniques [Smolka et al. 2023]. However, to the best of our knowledge, there still

remains a significant absence of formal semantics for the Solana eBPF VM, which hinders the development of a robust

foundation for further formal verification.

The Solana eBPF, abbreviated as SBPF, originated from Linux eBPF but has since diverged significantly. Previous

work on eBPF verification [Nelson et al. 2020; Yuan et al. 2022] has mainly focused on verified components of eBPF

VMs or formalization of specific subsets of the eBPF ISA. In contrast, this paper addresses the challenge of developing a

comprehensive formal semantics. To this end, we present the first complete formal semantics of the binary-level SBPF

ISA. This binary-level semantics enables us to formalize the rest of the Solana VM components, e.g., the SBPF assembler,

disassembler, and particularly the x86-64 Just-In-Time (JIT) compiler, along with the proofs of several key properties.

All formalizations and proofs presented in this paper have been mechanically verified using the Isabelle/HOL proof

assistant [Nipkow et al. 2002].

1.1 Challenges

Formalizing the SBPF ISA semantics in Isabelle/HOL poses major challenges.

Inconsistent Instruction Variants. The SBPF ISA, a variant of Linux eBPF, exhibits significant differences in the

behaviour of its instructions. For example, in eBPF, the 32-bit addition instruction performs unsigned addition behaviour,

whereas in SBPF, it executes a 32-bit signed addition operation. Such inconsistency between eBPF and SBPF makes

it difficult to refer to existing eBPF semantics [Nelson et al. 2020; Yuan et al. 2022]. Furthermore, discrepancies in

the original Solana VM implementation contribute to this inconsistency: the SBPF verifier permits a version-specific

instruction that the SBPF interpreter does not. This inconsistency at the source code level complicates the formalization

of the SBPF ISA. In fact, we identified bugs in the Solana Rust implementation arising from incorrect instruction version

checks (details in Section 7.1).

Lack of Documentation. Unlike well-established ISAs such as x86-64, ARM, and RISC-V, which have extensive

documentation and formal semantics research [Armstrong et al. 2019; Dasgupta et al. 2019; Leroy 2009; Sewell et al.

2010], the SBPF ISA lacks an official manual or standardization, mainly due to its rapid evolution and frequent version

iterations. Formalizing the SBPF ISA involves the non-trivial task of identifying all corner cases directly from the source

code. Recently, Linux eBPF has recently proposed a draft of its standard documentation [Thaler 2024] to the IETF BPF

Working Group (albeit without formal semantic support), providing a complete formal semantics for SBPF ISA would

offer a solid foundation for future SBPF standardization efforts.

Complex Semantics of the Host Language (Rust). The semantics of SBPF ISA is described in accordance with the Rust

implementation of the Solana interpreter, thus introducing complexities due to Rust’s inherent features. For instance, the

interpreter relies on intentionally-wrapped arithmetic functions to implement specific SBPF instructions. Additionally,

the different semantics in basic operators between Rust and Isabelle/HOL, such as division and modulo, particularly

when applied to negative numbers, significantly complicate the pursuit of a complete and faithful formalization.

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

A complete formal semantics of eBPF instruction set architecture for Solana 3

Validation Gap. The original SBPF interpreter is implemented in the low-level Rust programming, whereas the formal-

ism of SBPF ISA is modelled in the high-level Isabelle/HOL functional language leveraging the "Word" library [Dawson

2009]. Currently, there are no verified compilers that facilitate direct translation between Rust and Isabelle/HOL. As

an alternative, we resort to executable semantics via the Isabelle/HOL extraction mechanism to validate the formal

semantics. However, the Isabelle/HOL extraction process yields "Word" types that are notably less accessible to human

readers. Another solution [Lochbihler 2018] requires modifying the Isabelle/HOL model and providing additional proofs

to ensure correctness. These limitations make it challenging to validate whether our abstract formalization accurately

captures the expected behaviour of the Solana interpreter.

1.2 Contributions

In this paper, we address these challenges by presenting the first and most complete semantics of the SBPF ISA for

application to the formalization of the Solana VM. Specifically, we make the following contributions:

Complete Semantics of the SBPF ISA. We present the most comprehensive formal semantics of SBPF to date. Specifically,

we formalize all binary-level instructions of the SBPF ISA in Isabelle/HOL, covering the entire set of 116 opcodes. These

include Arithmetic Logic Unit (ALU), byte-swap, branching, memory operations, function calls, and exit behaviours.

Semantics Validation. We introduce a lightweight and non-invasive approach for validating the executable semantics

generated by the Isabelle/HOL extraction mechanism. This executable semantics has undergone thorough testing against

the Solana official test suite and over 100,000 automatically generated benchmarks within our validation framework.

Throughout the validation progress, we successfully identified several subtle and deeply hidden inconsistencies between

our Isabelle/HOL model and the original Solana interpreter.

Solana VM Formalization. Building on our binary-level formalization of the SBPF ISA, we extend our work to include

the remaining components of the Solana VM. This encompasses a consistency proof for the SBPF assembler-disassembler

pair, a formalization of the verifier, and a partial proof related to the JIT compilation.

Plan. The rest of the paper is organized as follows. Section 2 provides some background on BPF, eBPF, and

SBPF. Section 3 outlines our approach, Section 4 proposes the semantic formalization of the full SBPF ISA. Section 5

validates the semantics. Section 6 presents a collection of semantics applications for Solana VM. Section 7 evaluates the

implementation of our formal semantics and the original Solana VM. Section 8 introduces related works, Section 9

concludes, and the last section provides the data-availability statement.

2 Background

This section introduces the essential features of BPF, Linux eBPF, and Solana eBPF.

2.1 BPF and Linux eBPF

BPF [McCanne and Jacobson 1993] was initially developed to enable flexible network packet filtering by allowing users

to provide BPF instructions that specify packet filter rules, which are executed directly within the kernel. This avoided

costly context switching and data copying typically associated with user-space filtering. This classical BPF, also known

as cBPF, is highly restrictive and limited, featuring only two registers and bytecode interpretation. Such restrictiveness

becomes an obstacle in emerging scenarios that demand rich functionality and low overhead.

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Shenghao Yuan et al.

Modern Linux kernels now support extended BPF (eBPF) [Fleming 2017], a subsystem that extends BPF’s capabilities

beyond packet filtering to a wide array of applications, including kernel profiling, load balancing, and firewalling.

Popular tools such as Docker, Katran [Incubator 2018], and kernel debugging utilities like Kprobes [Goswami 2005]

leverage or are built directly on top of eBPF.

The Linux eBPF subsystem provides ten general-purpose 64-bit registers, R0–R9, along with a frame pointer, R10,

which points to a dedicated stack memory region. It also offers eBPF-specific data structures (often referred to as eBPF

maps) and a set of helper functions.

The eBPF instructions have a general format encoded in slots of 64 bits, as shown in Figure 1. A 64-bit eBPF bytecode,

from least significant bit (lsb) to most significant bit (msb), consists of the following fields:

• 8-bit opcode

• 4-bit destination register and 4-bit source register

• 16-bit signed integer offset

• 32-bit signed integer immediate value

Fig. 1. Linux eBPF instruction encoding format

Since eBPF bytecode is often written by untrusted users, the kernel employs a verifier to perform a series of checks

at load time. Once the verification process succeeds, the validated bytecode is either interpreted by the eBPF interpreter

or further compiled into native machine code by an in-kernel, target-specific JIT compiler for optimized performance.

2.2 Solana eBPF

eBPF has been adapted for various environments, including eBPF for Windows [Microsoft 2019], the Internet of Things

(IoT) operating system RIOT-OS’ Femto-Containers [Zandberg et al. 2022], and most notably, the Solana eBPF VM

(or SBPF for short). Solana smart contracts, typically written in languages like C or Rust, are compiled to Solana

eBPF bytecode, which can be executed in either JIT compilation or interpreter mode. Solana’s runtime enforces

several execution constraints when running on-chain programs in the eBPF VM. By default, the SBPF VM limits

the computational resources of each instruction to a specific number of compute units (CUs). The Solana runtime

accumulates these compute units for all instructions within a transaction, with certain runtime operations, such as

system calls, consuming a fixed number of compute units. When executing an instruction in the SBPF VM, it is serialized

and passed to the VM, with the program input starting at a fixed address in the VM’s memory layout.

Similar to eBPF, SBPF is a 64-bit register-based virtual machine that uses fixed-size 64-bit instructions. Its ISA derives

from eBPF. SBPF consists of three primary components: a compact verifier (around 0.4k lines of code) that performs

basic validation (e.g., excluding illegal opcodes), an interpreter, and an x86-64 JIT compiler for execution. Additionally,

SBPF provides an assembler and disassembler to bridge between SBPF bytecode and its assembly representation.

The Solana smart contracts are often written in e.g., Rust pseudo code, then these programs are translated into

bytecode using a specific LLVM compiler with the support of the SBPF backend. As shown in Figure 2, if the SBPF

verifier validates the provided bytecode scripts, the selected SBPF execution engine runs them. In practice, an assembler

is used to generate a SBPF assembly instruction from the corresponding bytecode before the verifier checks and the

consequent execution. Solana also provides a disassembler for debugging and testing.

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

A complete formal semantics of eBPF instruction set architecture for Solana 5

Fig. 2. Solana eBPF VM structure.

As shown in Figure 2, we explain the workflow of the Solana VM by an example. The input smart contract

has the code fragment of an addition of two variables 𝑎 and 𝑏 of types 𝑢64, it is compiled into a 64-bit bytecode

[. . . ; 0𝑥0𝐹 ; 0𝑥34; 0𝑥00; 0𝑥00; 0𝑥00; 0𝑥00; 0𝑥00; 0𝑥00; . . .] where the opcode 0𝐹 represents the Solana 64-bit addition

instruction, the variables 𝑎 and 𝑏 are allocated into registers 𝑅3 and 𝑅4 respectively, and the rest fields in this 64-bit

bytecode are all zero. This bytecode is further translated into the Solana assembly instruction 𝐵𝑃𝐹_𝐴𝐷𝐷64_𝑅𝐸𝐺 𝑅3 𝑅4,

and executed by the Solana interpreter using a pattern-match statement.

The SBPF instruction set has undergone multiple iterations over time, resulting in the coexistence of versions𝑉1 and

𝑉2. This versioning ensures backward compatibility with previously deployed on-chain eBPF programs while enabling

the introduction of new features.

Several key distinctions between the Solana eBPF VM and the Linux eBPF complicate our formalization:

• Termination: SBPF uses CU as a metric to gauge resource consumption in Solana’s runtime, whereas eBPF em-

ploys static analysis techniques via an offline verifier to ensure termination. This runtime CU-based termination

adds complexity to SBPF’s execution engines (e.g., JIT).

• Dynamic Stack Frame: While eBPF has a fixed-size stack (512B), SBPF supports dynamic stack frames, requiring

the SBPF VM to manage the calling conventions.

• Solana ISA: SBPF inherits most general-purpose instructions from eBPF but excludes certain instructions (e.g.,

atomic operations) for on-chain transaction safety. Moreover, SBPF introduces 13 new instructions tailored to

the blockchain context.

– Version Compatibility: SBPF maintains two different ISAs (𝑉1 and 𝑉2), requiring the Solana VM to handle

both versions across all components. This version management introduces additional potential for errors.

– New Instructions: Solana extends its ISA with new features, including signed instructions and 128-bit

operand support. SBPF has special instructions to modify the stack pointer while eBPF’s stack pointer is

always read-only.

– Differing Semantics: SBPF and eBPF have different behaviours for the same opcodes. For example, in

SBPF, the 32-bit 𝑎𝑑𝑑 instruction uses a signed extension, while in eBPF, it uses an unsigned extension.

Furthermore, the EXIT instruction in eBPF terminates bytecode execution, whereas, in SBPF, it also serves

as a callback mechanism for SBPF function calls.

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Shenghao Yuan et al.

3 Overview

This section presents an overview of our methodology, which, to the best of our knowledge, is the first and most

comprehensive formal semantics of the SBPF ISA. In the subsequent sections, we will demonstrate the faithfulness and

the usability of our formal model by applying it to various scenarios.

As illustrated in Figure 3, we begin by formalizing the original rust-implemented SBPF VM, into an abstract high-level

semantic model in Isabelle/HOL. This formalization serves as the theoretical foundation, supporting both the executable

semantics for validation and the formalization of the core components in Solana VM.

Fig. 3. Overview of the Solana ISA semantics and its applications.

Semantics. (§4) The formal semantics for the SBPF ISA captures the entire instruction set and defines two key

components of the execution state: the Solana register map and a general-purpose memory model. This formalization

provides a high-level specification for the Solana VM interpreter, ensuring precise modelling for all instruction semantics.

Validation Framework. (§5) Based on the Solana interpreter specification in Isabelle/HOL,we leverage the Isabelle/HOL-
to-OCaml extraction mechanism to generate executable semantics. To overcome the extraction limitations, we introduce

lightweight glue code at both the Isabelle/HOL and OCaml levels. Our validation framework includes the automatic

generation of extensive benchmarks to test the consistency between the extracted executable OCaml code and the

original Rust-based Solana interpreter.

Solana Applications. (§6) Our semantics also enables the formalization of several components of the Solana VM,

including the verifier, assembler, disassembler, and portions of the x86-64 JIT compiler. Additionally, we provide a binary

semantics of the x86-64 model for future verification, covering all x86-64 instructions utilized by the JIT compiler.

4 Formalization of SBPF Semantics

This section presents the formal syntax, program state, and semantics of SBPF, along with the formalization of the

Solana interpreter.

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

A complete formal semantics of eBPF instruction set architecture for Solana 7

4.1 Syntax

The formal syntax of the SBPF ISA is depicted in Figure 4. The SBPF ISA has 10 general-purpose registers, a frame

pointer (FP) register, and a program counter (PC). Memory access in SBPF is facilitated through the size of the accessed

memory block𝑚𝑏. SBPF provides common arithmetic, logic, and signed/unsigned condition operations. In particular, the

division and modulo in SBPF have different variants according to the specific ISA version, they are called version-related

operations (𝑣𝑜𝑝) in the paper. The first operator (if exists) of an SBPF instruction is a destination register, and the second

operator (𝑠𝑜𝑝) is usually a source register or a 32-bit immediate number.

(Register) 𝑟 ::= 𝑅0 | 𝑅1 | 𝑅2 | . . . | 𝑅9 | 𝐹𝑃 | 𝑃𝐶
(MemBlock) 𝑚𝑏 ::= 𝑀8 | 𝑀16 | 𝑀32 | 𝑀64

(ALUOp) 𝑎𝑜𝑝 ::= 𝑎𝑑𝑑 | 𝑠𝑢𝑏 | 𝑚𝑢𝑙 | 𝑚𝑜𝑣 | 𝑜𝑟 | 𝑎𝑛𝑑 | 𝑥𝑜𝑟 | 𝑙𝑠ℎ | 𝑟𝑠ℎ | 𝑎𝑟𝑠ℎ
(VersionOp) 𝑣𝑜𝑝 ::= 𝑑𝑖𝑣 | 𝑚𝑜𝑑

(Condition) 𝑐𝑜𝑝 ::= = | ≠ | <𝑢 | ≤𝑢 | ≥𝑢 |>𝑢 | <𝑠 | ≤𝑠 | ≥𝑠 | >𝑠 | . . .
(SecondOp) 𝑠𝑜𝑝 ::= 𝑟 | 𝑖𝑚𝑚

(Instruction) 𝑖𝑛𝑠 ::= ALU32 𝑎𝑜𝑝 𝑟𝑑 𝑠𝑜𝑝 | ALU64 𝑎𝑜𝑝 𝑟𝑑 𝑠𝑜𝑝 |
MDM32 𝑣𝑜𝑝 𝑟𝑑 𝑠𝑜𝑝 | MDM64 𝑣𝑜𝑝 𝑟𝑑 𝑠𝑜𝑝 |
BE 𝑟𝑑 𝑖𝑚𝑚 |

(∗𝑉 1∗) NEG32 𝑟𝑑 | NEG64 𝑟𝑑 | LE 𝑟𝑑 𝑖𝑚𝑚 |
(∗𝑉 2∗) PQR32 𝑣𝑜𝑝 𝑟𝑑 𝑠𝑜𝑝 | PQR64 𝑣𝑜𝑝 𝑟𝑑 𝑠𝑜𝑝 |
(∗𝑉 2∗) UHMUL 𝑟𝑑 𝑠𝑜𝑝 | SHMUL 𝑟𝑑 𝑠𝑜𝑝 |
(∗𝑉 2∗) LDDW 𝑟𝑑 𝑖𝑚𝑚 𝑖𝑚𝑚 | HOR64 𝑑𝑠𝑡 𝑖𝑚𝑚 | ADD_STK 𝑖𝑚𝑚 |

JA 𝑜𝑓𝑠 | JUMP 𝑐𝑜𝑝 𝑟𝑑 𝑠𝑜𝑝 𝑜𝑓𝑠 |
LD𝑚𝑏 𝑟𝑑 𝑟𝑠 𝑜𝑓𝑠 | ST𝑚𝑏 𝑟𝑑 𝑠𝑜𝑝 𝑜𝑓𝑠 |
CALL_REG 𝑟𝑠 𝑖𝑚𝑚 | CALL_IMM 𝑟𝑠 𝑖𝑚𝑚 | EXIT

Fig. 4. The syntax of the SBPF formal model

According to the version of SBPF ISA, the SBPF instructions are split into:

• common ISA used in all versions: the 32-bit and 64-bit ALU instructions, the unsigned division and modulo

instructions (MDM), the byte-swap instruction BE, JUMP instructions with a signed 16-bit offset, memory load

and store with different memory block sizes, call instructions (with a register value or an immediate number),

and the exit instruction.

• SBPF_v1 specific ISA: the 32-bit and 64-bit negation instructions (NEG), and a byte-swap instruction LE converting

to litter-endian format.

• SBPF_v2 specific ISA: the 32-bit and 64-bit signed division and modulo instructions (PQR), 128-bit unsigned

(UHMUL) and signed (SHMUL) multiplication, and the load double-words instruction LDDW, high 32-bit bitwise-or

instruction HOR64, and the special stack pointer modification instruction ADD_STK.

4.2 Semantics

Program State. The normal program state is a 5-tuple S ::= ⟨R,M, 𝑆𝑡𝑎𝑐𝑘,𝑉𝑒𝑟𝑠𝑖𝑜𝑛, 𝑐𝑎𝑙𝑙_𝑚𝑎𝑝⟩, consisting of
Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Shenghao Yuan et al.

• the register state R is a mapping from the Solana registers to 64-bit integers: R ∈ 𝑟 → 𝑖𝑛𝑡64;

• the memory modelM is a partial mapping from a 64-bit address to a byte:M ∈ 𝑖𝑛𝑡64 ⇀ 𝑖𝑛𝑡8, and it provides

basic memory operations, detailed in subsubsection 4.2.5;

• the stack state 𝑆𝑡𝑎𝑐𝑘 ::= ⟨𝑐𝑎𝑙𝑙_𝑑𝑒𝑝𝑡ℎ, 𝑠𝑡𝑎𝑐𝑘_𝑝𝑜𝑖𝑛𝑡𝑒𝑟, 𝑐𝑎𝑙𝑙_𝑓 𝑟𝑎𝑚𝑒_𝑙𝑖𝑠𝑡⟩ records the current call depth, the stack
pointer, and the list of current call frames. Each frame 𝑐 𝑓 ::= ⟨𝑐𝑎𝑙𝑙𝑒𝑟_𝑠𝑎𝑣𝑒𝑑_𝑟𝑒𝑔𝑠, 𝑓 𝑟𝑎𝑚𝑒_𝑝𝑜𝑖𝑛𝑡𝑒𝑟, 𝑟𝑒𝑡𝑢𝑟𝑛_𝑎𝑑𝑑𝑟 ⟩
includes the value of the caller save registers (i.e., 𝑅6 − 𝑅9), the caller frame pointer, and the return address;

• The Solana ISA version:𝑉1 for the legacy ISA or𝑉2 for the current ISA;

• The function call information is a partial mapping from a 32-bit key to a 64-bit value representing the start

address of a function: 𝑐𝑎𝑙𝑙_𝑚𝑎𝑝 ∈ 𝑖𝑛𝑡32 ⇀ 𝑖𝑛𝑡64.

There are also three specific states: 𝐸𝐹𝑙𝑎𝑔 captures a runtime exception message e.g., the value of the source register

is zero when interpreting a division instruction, 𝐸𝑟𝑟 represents potential undefined behaviours, and 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑣 indicates

the normal termination of the Solana VM with the return value 𝑣 .

Notation. Before formalizing the semantics of Solana instructions, we declare the following notations:

• S.𝑋 represents the 𝑋 field of the program state S, e.g., S.R is the register state of S.
• S{𝑋 ← 𝑌 } modifies the 𝑋 (sub-)field of S with the value 𝑌 . e.g., S{𝑃𝐶 ← 𝑣} uses 𝑣 to update the value of 𝑃𝐶

register in the register map of the state S.
• [[𝑟]]𝑡𝑦 with a type casting suffix 𝑡𝑦 (∈ {𝑠32, 𝑢32, 𝑠64, 𝑢64}) indicates the signed/unsigned extended value of

register 𝑟 in the state, we overload this notation [[𝑠𝑜𝑝]]𝑡𝑦 : if 𝑠𝑜𝑝 is a register 𝑟 , returns [[𝑟]]𝑡𝑦 , otherwise indicates
a signed/unsigned extended value of an immediate number. [[𝑟]] is by default [[𝑟]]𝑢64 for simplification.

• For option types, ⌊𝑣⌋ (i.e., Some 𝑣) indicates success, and ∅ (i.e., None) indicates failure.
• S ins−−→ S′ represents one-step execution of the SBPF instruction 𝑖𝑛𝑠 , performing a semantics transition from

the initial state S to the final state S′.

4.2.1 Semantics: ALU Instructions. The Solana ALU instructions have complicated behaviours due to the different

versions, signed/unsigned semantics, etc. Most ALU instructions in Solana have both 32-bit and 64-bit operators, and all

of them have been formalized in Isabelle/HOL. We mainly introduce the transition rules of 32-bit operations in the

following because they have much more complex type-casting behaviours.

eval_aop32(𝑎𝑜𝑝, 𝑟𝑑 , 𝑠𝑜𝑝,R)
def

=


(𝑢64) ([[𝑟𝑑]]𝑠32 + [[𝑠𝑜𝑝]]𝑠32) , if 𝑎𝑜𝑝 = 𝑎𝑑𝑑

(𝑢64) ([[𝑟𝑑]]𝑢32 | [[𝑠𝑜𝑝]]𝑢32) , if 𝑎𝑜𝑝 = 𝑜𝑟

. . .

(𝑢64) ([[𝑟𝑑]]𝑠32 >> ([[𝑠𝑜𝑝]]𝑢32 & 31)) , if 𝑎𝑜𝑝 = 𝑎𝑟𝑠ℎ

For 32-bit ALU instructions, 𝑎𝑑𝑑 , 𝑠𝑢𝑏, and𝑚𝑢𝑙 adopt explicit signed extension semantics
1
, as defined in eval_aop32,

𝑎𝑟𝑠ℎ requires the signed/unsigned extension for the first/second operator with a safe masking operation for avoiding

shift errors, and the rest perform unsigned extension behaviours. The semantics rule ALU32-Normal represents that the

normal execution of ALU32 updates the destination register with the evaluated result, and changes 𝑃𝐶 to point to the

next 64-bit instruction.

1
https://github.com/solana-labs/solana/issues/32924

Manuscript submitted to ACM

https://github.com/solana-labs/solana/issues/32924

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

A complete formal semantics of eBPF instruction set architecture for Solana 9

eval_aop32(𝑎𝑜𝑝, 𝑟𝑑 , 𝑠𝑜𝑝,S.R) = 𝑣

S
ALU32 𝑎𝑜𝑝 𝑟𝑑 𝑠𝑜𝑝
−−−−−−−−−−−−−−−→ S{𝑟𝑑 ← 𝑣, 𝑃𝐶 ← [[𝑃𝐶]] + 1}

(ALU32-Normal)

For 32-bit 𝑑𝑖𝑣 and𝑚𝑜𝑑 instructions,

• MDM32-Normal: when the value of the second operator is not zero, the semantics rule performs a normal

transition;

• MDM32-Err : If the second operator is an immediate number, the transition goes to 𝐸𝑟𝑟 when the immediate is 0;

• MDM32-EFlag: If the second operator is a register, the state is changed into 𝐸𝐹𝑙𝑎𝑔 when the value is 0 at runtime.

(𝑢64) ([[𝑟𝑑]]𝑢32 𝑣𝑜𝑝 [[𝑠𝑜𝑝]]𝑢32) = 𝑣 [[𝑠𝑜𝑝]]𝑢32 ≠ 0

S
MDM32 𝑣𝑜𝑝 𝑟𝑑 𝑠𝑜𝑝
−−−−−−−−−−−−−−−→ S{𝑟𝑑 ← 𝑣, 𝑃𝐶 ← [[𝑃𝐶]] + 1}

(MDM32-Normal)

𝑖𝑚𝑚 = 0

S
MDM32 𝑣𝑜𝑝 𝑟𝑑 𝑖𝑚𝑚
−−−−−−−−−−−−−−−−→ 𝐸𝑟𝑟

(MDM32-Err)
[[𝑟𝑠]]𝑢32 = 0

S
MDM32 𝑣𝑜𝑝 𝑟𝑑 𝑟𝑠−−−−−−−−−−−−−→ 𝐸𝐹𝑙𝑎𝑔

(MDM32-EFlag)

The negation instructions only exist in the legacy Solana_v1 ISA. If the ISA version is not 𝑉1, the transition goes to

𝐸𝑟𝑟 state (NEG32-Err). Otherwise, a negation operation with two kinds of type casting is performed (NEG32-Normal).

S.𝑉𝑒𝑟𝑠𝑖𝑜𝑛 ≠𝑉1

S NEG32 𝑟𝑑−−−−−−−→ 𝐸𝑟𝑟

(NEG32-Err)
S.𝑉𝑒𝑟𝑠𝑖𝑜𝑛 =𝑉1 (𝑢64) (−[[𝑟𝑑]]𝑖32) = 𝑣

S NEG32 𝑟𝑑−−−−−−−→ S{𝑟𝑑 ← 𝑣, 𝑃𝐶 ← [[𝑃𝐶]] + 1}
(NEG32-Normal)

In the following semantics rules, we omit the 𝐸𝑟𝑟 /𝐸𝐹𝑙𝑎𝑔-related state transitions for simplification.

4.2.2 Semantics: Byte-swap Instructions. We first declare the atomic function byte(𝑣, 𝑛) which gets the nth-byte of

value 𝑣 , e.g., byte(0𝑥1234, 0) = 0𝑥34 and byte(0𝑥1234, 1) = 0𝑥12. Then the byte-swap functions to_be(𝑣, 𝑠𝑧) and
to_le(𝑣, 𝑠𝑧), accepting unsigned sz-bytes value 𝑣 and returning the value with the same size, are defined as follows,

where 𝑟𝑒𝑠 and 𝑣 satisfy the relation ∀𝑛. 𝑛 ≤ 𝑠𝑧 → byte(𝑟𝑒𝑠, 𝑛) = byte(𝑣, 𝑠𝑧 − 𝑛).

to_be(𝑣, 𝑠𝑧) def=
{

𝑣 , if target is big-endian
𝑟𝑒𝑠 , if target is litten-endian

to_le(𝑣, 𝑠𝑧) def=
{

𝑟𝑒𝑠 , if target is big-endian
𝑣 , if target is litten-endian

In this paper, we mainly discuss litten-endian architectures e.g., x86 and x86-64.

SBPF has an instruction 𝐵𝐸 for all versions. The normal transition rule BE-Normal converts an unsigned 𝑖𝑚𝑚-bit

integer to a big-endian using the function 𝑡𝑜_𝑏𝑒 , where 𝑖𝑚𝑚 is limited to 16, 32, or 64.

𝑖𝑚𝑚 ∈ {16, 32, 64} (𝑢64) (to_be([[𝑟𝑑]]𝑢𝑖𝑚𝑚, 𝑖𝑚𝑚/8 − 1)) = 𝑣

S BE 𝑟𝑑 𝑖𝑚𝑚−−−−−−−−−→ S{𝑟𝑑 ← 𝑣, 𝑃𝐶 ← [[𝑃𝐶]] + 1}
(BE-Normal)

The legacy Solana ISA also includes a specific instruction: 𝐿𝐸. Similarly, the normal transition rule LE-Normal

converts an unsigned 𝑖𝑚𝑚-bit integer to a little-endian, but limits the 𝐿𝐸 instruction specific to the Solana_v1 version.

𝑖𝑚𝑚 ∈ {16, 32, 64} (𝑢64) (to_le([[𝑟𝑑]]𝑢𝑖𝑚𝑚, 𝑖𝑚𝑚/8 − 1)) = 𝑣 S.𝑉𝑒𝑟𝑠𝑖𝑜𝑛 =𝑉1

S LE 𝑟𝑑 𝑖𝑚𝑚−−−−−−−−−→ S{𝑟𝑑 ← 𝑣, 𝑃𝐶 ← [[𝑃𝐶]] + 1}
(LE-Normal)

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Shenghao Yuan et al.

4.2.3 Semantics: Solana_v2 specific Instructions. The Solana_v2 ISA provides a set of explicitly signed operations for 𝑑𝑖𝑣

and𝑚𝑜𝑑 , named 𝑃𝑄𝑅, and the 128-bit multiplication. We mainly show the signed semantics rules for normal transitions

(PQR32-Normal and SHMUL-Normal).

(𝑢64) ([[𝑟𝑑]]𝑖32 𝑣𝑜𝑝 [[𝑠𝑜𝑝]]𝑖32) = 𝑣 [[𝑠𝑜𝑝]]𝑖32 ≠ 0 S.𝑉𝑒𝑟𝑠𝑖𝑜𝑛 ≠𝑉1

S
PQR32 𝑣𝑜𝑝 𝑟𝑑 𝑠𝑜𝑝
−−−−−−−−−−−−−−−→ S{𝑟𝑑 ← 𝑣, 𝑃𝐶 ← [[𝑃𝐶]] + 1}

(PQR32-Normal)

(𝑢64) (([[𝑟𝑑]]𝑖128 × [[𝑠𝑜𝑝]]𝑖128) >> 64) = 𝑣 S.𝑉𝑒𝑟𝑠𝑖𝑜𝑛 ≠𝑉1

S
SHMUL 𝑟𝑑 𝑠𝑜𝑝
−−−−−−−−−−−→ S{𝑟𝑑 ← 𝑣, 𝑃𝐶 ← [[𝑃𝐶]] + 1}

(SHMUL-Normal)

There are three specific instructions in the Solana_v2 ISA:

• LDDW : Loads a 64-bit integer (usually a memory address) into the destination register where the integer is

split into the low 32-bit integer stored in the immediate field and the high 32-bit one stored in the next 64-bit

binary. The LDDW instruction has a 128-bit size, therefore the value of 𝑃𝐶 is increased by 2.

[[𝑖𝑚𝑚𝑙]]𝑢64 | ([[𝑖𝑚𝑚ℎ]]𝑢64 << 32) = 𝑣 S.𝑉𝑒𝑟𝑠𝑖𝑜𝑛 ≠𝑉1

S
LDDW 𝑟𝑑 𝑖𝑚𝑚𝑙 𝑖𝑚𝑚ℎ−−−−−−−−−−−−−−−−−→ S{𝑟𝑑 ← 𝑣, 𝑃𝐶 ← [[𝑃𝐶]] + 2}

(LDDW-Normal)

• HOR64: Modifies the high 32-bit of the destination register using the bitwise OR operation.

[[𝑟𝑑]]𝑢64 | ([[𝑖𝑚𝑚]]𝑢64 << 32) = 𝑣 S.𝑉𝑒𝑟𝑠𝑖𝑜𝑛 ≠𝑉1

S HOR64 𝑟𝑑 𝑖𝑚𝑚−−−−−−−−−−−−→ S{𝑟𝑑 ← 𝑣, 𝑃𝐶 ← [[𝑃𝐶]] + 1}
(HOR64-Normal)

• ADD_STK : Modifies the stack pointer of the Solana VM.

S.𝑉𝑒𝑟𝑠𝑖𝑜𝑛 ≠𝑉1

S ADD_STK 𝑖𝑚𝑚−−−−−−−−−−−→ S{𝑠𝑡𝑎𝑐𝑘_𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ← 𝑠𝑡𝑎𝑐𝑘_𝑝𝑜𝑖𝑛𝑡𝑒𝑟 + [[𝑖𝑚𝑚]]𝑢64, 𝑃𝐶 ← [[𝑃𝐶]] + 1}
(ADD_STK-Normal)

4.2.4 Semantics: Jump Instructions. The evaluation function eval_cond is simply defined as follows:

eval_cond(𝑐𝑜𝑝, 𝑣0, 𝑣1) def=


𝑣0 = 𝑣1 , if 𝑐𝑜𝑝 𝑖𝑠 =

𝑣0 ≠ 𝑣1 , if 𝑐𝑜𝑝 𝑖𝑠 ≠

. . .

The jump instructions have the semantics: the target 𝑃𝐶 could be either the next instruction (Jump-F) or the offset

computation [[𝑃𝐶]] + 𝑜𝑓𝑠 + 1 (Jump-T), relying on whether the value of the destination register and the second operator

satisfy the condition 𝑐𝑜𝑝 or not. The jump-always (JA) instruction always performs the offset computation (JA-Normal).

S
JA 𝑜𝑓𝑠
−−−−−→ S{𝑃𝐶 ← [[𝑃𝐶]] + 𝑜𝑓𝑠 + 1}

(JA-Normal)

eval_cond(𝑐𝑜𝑝, [[𝑟𝑑]], [[𝑠𝑜𝑝]]) = 𝑇𝑟𝑢𝑒

S
JUMP 𝑐𝑜𝑝 𝑟𝑑 𝑠𝑜𝑝 𝑜𝑓𝑠
−−−−−−−−−−−−−−−−−→ S{𝑃𝐶 ← [[𝑃𝐶]] + 𝑜𝑓𝑠 + 1}

(Jump-T)
eval_cond(𝑐𝑜𝑝, [[𝑟𝑑]], [[𝑠𝑜𝑝]]) = 𝐹𝑎𝑙𝑠𝑒

S
JUMP 𝑐𝑜𝑝 𝑟𝑑 𝑠𝑜𝑝 𝑜𝑓𝑠
−−−−−−−−−−−−−−−−−→ S{𝑃𝐶 ← [[𝑃𝐶]] + 1}

(Jump-F)

4.2.5 Semantics: Memory Instructions. Our memory model, adopting the little-endian style, provides some basic

operations e.g.,

• load(mb, M, addr) = ⌊v⌋: Reads𝑚𝑏-byte value 𝑣 at starting address addr fromM,

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

A complete formal semantics of eBPF instruction set architecture for Solana 11

load(𝑚𝑏, M, 𝑎𝑑𝑑𝑟) def=



⌊𝑣0⌋ , if𝑚𝑏 = 𝑀8 ∧ ⌊byte(𝑣1, 0)⌋ =M 𝑎𝑑𝑑𝑟

⌊𝑣1⌋ , if𝑚𝑏 = 𝑀16 ∧ (∀𝑖 . 0 ≤ 𝑖 ≤ 1→ ⌊byte(𝑣1, 𝑖)⌋ =M (𝑎𝑑𝑑𝑟 + 𝑖))
⌊𝑣3⌋ , if𝑚𝑏 = 𝑀32 ∧ (∀𝑖 . 0 ≤ 𝑖 ≤ 3→ ⌊byte(𝑣1, 𝑖)⌋ =M (𝑎𝑑𝑑𝑟 + 𝑖))
⌊𝑣7⌋ , if𝑚𝑏 = 𝑀64 ∧ (∀𝑖 . 0 ≤ 𝑖 ≤ 7→ ⌊byte(𝑣1, 𝑖)⌋ =M (𝑎𝑑𝑑𝑟 + 𝑖))
∅ , Otherwise

• store(mb, M, addr, v) = ⌊M′⌋: Writes𝑚𝑏-byte value 𝑣 intoM’ at starting address addr , and returns the

modified memoryM′. We writeM{𝑙𝑜𝑐 ↦→ 𝑏} for updating the cell of the address 𝑙𝑜𝑐 inM with a byte value 𝑏.

store(𝑚𝑏, M, 𝑎𝑑𝑑𝑟, 𝑣) def=



⌊M{𝑎𝑑𝑑𝑟 ↦→ byte(𝑣, 0)}⌋ , if𝑚𝑏 = 𝑀8

⌊M{𝑎𝑑𝑑𝑟 + 𝑖 ↦→ byte(𝑣, 𝑖)}⌋ , if𝑚𝑏 = 𝑀16 ∧ 0 ≤ 𝑖 ≤ 1

⌊M{𝑎𝑑𝑑𝑟 + 𝑖 ↦→ byte(𝑣, 𝑖)}⌋ , if𝑚𝑏 = 𝑀32 ∧ 0 ≤ 𝑖 ≤ 3

⌊M{𝑎𝑑𝑑𝑟 + 𝑖 ↦→ byte(𝑣, 𝑖)}⌋ , if𝑚𝑏 = 𝑀64 ∧ 0 ≤ 𝑖 ≤ 7

∅ , Otherwise

The memory instructions use those operations to perform semantics transitions which update either the destination

register (LD) or the memory (ST).

load(𝑚𝑏, S.M, [[𝑟𝑠]] + 𝑜 𝑓 𝑠) = ⌊𝑣⌋

S
LD𝑚𝑏 𝑟𝑑 𝑟𝑠 𝑜𝑓𝑠
−−−−−−−−−−−−−→ S{𝑟𝑑 ← 𝑣, 𝑃𝐶 ← [[𝑃𝐶]] + 1}

(Load)
store(𝑚𝑏, S.M, [[𝑟𝑑]] + 𝑜 𝑓 𝑠, [[𝑠𝑜𝑝]]) = ⌊M′⌋

S
ST𝑚𝑏 𝑟𝑑 𝑠𝑜𝑝 𝑜𝑓𝑠
−−−−−−−−−−−−−−→ S{M ←M′, 𝑃𝐶 ← [[𝑃𝐶]] + 1}

(Store)

4.2.6 Semantics: Call Instructions. SBPF provides two call instructions: call with register (Call_REG) and call with

immediate (Call_IMM). These instructions share similar semantics: first, computing the target pc, then pushing the

current frame onto the global frame list, followed by updating the register map. The primary distinction between the

two lies in the computation of the target PC.

For Call_REG, the target PC is evaluated using:

eval_target_pc_reg(S, 𝑟𝑠 , 𝑖𝑚𝑚) def=

[[𝑅𝑖𝑚𝑚]] , if S.𝑉𝑒𝑟𝑠𝑖𝑜𝑛 = 𝑉1

[[𝑟𝑠]] , if S.𝑉𝑒𝑟𝑠𝑖𝑜𝑛 ≠ 𝑉1

Where, in Solana_v1, the register index is determined by the immediate value 𝑖𝑚𝑚, and for other Solana versions, the

target PC is stored in the source register 𝑟𝑠 . Once the target PC is determined, the call instruction invokes the function

push_frame, which performs the following steps:

push_frame(S) def=

let 𝑛𝑓𝑟 = < [[[𝑅6]], [[𝑅7]], [[𝑅8]], [[𝑅9]]], [[𝐹𝑃]], [[𝑃𝐶]] + 1 > in

let 𝑛𝑠𝑝 = if S.𝑉𝑒𝑟𝑠𝑖𝑜𝑛 = 𝑉1 then S.𝑠𝑡𝑎𝑐𝑘_𝑝𝑜𝑖𝑛𝑡𝑒𝑟 + 𝑠𝑡𝑎𝑐𝑘_𝑓 𝑟𝑎𝑚𝑒_𝑠𝑖𝑧𝑒 else S.𝑠𝑡𝑎𝑐𝑘_𝑝𝑜𝑖𝑛𝑡𝑒𝑟 in

let 𝑠𝑡𝑘 = < S.𝑐𝑎𝑙𝑙_𝑑𝑒𝑝𝑡ℎ + 1, 𝑛𝑠𝑝, S.𝑐𝑎𝑙𝑙_𝑓 𝑟𝑎𝑚𝑒_𝑙𝑖𝑠𝑡{S.𝑐𝑎𝑙𝑙_𝑑𝑒𝑝𝑡ℎ ↦→ 𝑛𝑓 𝑟 } > in

(𝑠𝑡𝑘, 𝑛𝑠𝑝)

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Shenghao Yuan et al.

• Creates a new frame 𝑛𝑓 𝑟 , storing the values of caller-saved registers (𝑅6 to 𝑅9), the 𝐹𝑃 register, and the return

address ([[PC]] + 1).

• Optionally adjusts the stack pointer based on the stack frame size (default: 4096, or 8192 if specified), as

Solana_v1 uses a dynamic stack frame size.

• Pushes this frame onto the call stack (i.e., stored at position 𝑐𝑎𝑙𝑙_𝑑𝑒𝑝𝑡ℎ), increments the call depth by 1, and

updates the stack pointer.

𝑖𝑚𝑚 ∈ [0, 9] eval_target_pc_reg(S, 𝑟𝑠 , 𝑖𝑚𝑚) = 𝑣 push_frame(S) = (𝑠𝑡𝑘, 𝑛𝑠𝑝)

S Call_REG 𝑟𝑠 𝑖𝑚𝑚−−−−−−−−−−−−−−−→ S{𝑃𝐶 ← 𝑣, 𝐹𝑃 ← 𝑛𝑠𝑝, 𝑆𝑡𝑎𝑐𝑘 ← 𝑠𝑡𝑘}
(Call_REG)

After updating the call stack, Call_REG modifies the PC register to point to the target PC, updates the 𝐹𝑃 register

with the new stack pointer, and updates the execution state with the modified stack.

The Call_IMM instruction in Solana operates in two modes, depending on the index of the source register 𝑟𝑠 (whether

𝑠 is zero or not):

• External Call: Invokes system APIs provided by the Solana platform, relying on Rust’s calling convention,

which is analogous to the Linux eBPF call mechanism.

• Internal Call: Executes functions defined within the bytecode of the Solana program.

Both modes utilize a partial function call map to compute the target address, represented by:

eval_target_pc_imm(S, 𝑖𝑚𝑚) def= S.𝑐𝑎𝑙𝑙_𝑚𝑎𝑝 (𝑖𝑚𝑚)

In this paper, we focus primarily on formalizing the internal call mechanism, which operates similarly to Call_REG.

External calls are trusted and abstracted out of the formalization.

𝑟𝑠 ≠ 𝑅0 eval_target_pc_imm(S, 𝑖𝑚𝑚) = ⌊𝑣⌋ push_frame(S) = (𝑠𝑡𝑘, 𝑛𝑠𝑝)

S Call_IMM 𝑟𝑠 𝑖𝑚𝑚−−−−−−−−−−−−−−−→ S{𝑃𝐶 ← 𝑣, 𝐹𝑃 ← 𝑛𝑠𝑝, 𝑆𝑡𝑎𝑐𝑘 ← 𝑠𝑡𝑘}
(Call_IMM)

4.2.7 Semantics: Exit Instruction. The transition moves to the 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 state when the call depth is 0, indicating that

all SBPF calls have returned (EXIT-Normal). If the call depth is greater than 0, the transition performs a callback by

removing the current frame from the stack using the pop_frame function defined as follows (Exit-Call).

pop_frame(S) def=

let (𝑐𝑠𝑙, 𝑜𝑠𝑝, 𝑟𝑎) = S.𝑐𝑎𝑙𝑙_𝑓 𝑟𝑎𝑚𝑒_𝑙𝑖𝑠𝑡 [S.𝑐𝑎𝑙𝑙_𝑑𝑒𝑝𝑡ℎ − 1] in

let 𝑛𝑠𝑝 = if S.𝑉𝑒𝑟𝑠𝑖𝑜𝑛 = 𝑉1 then 𝑜𝑠𝑝 − 𝑠𝑡𝑎𝑐𝑘_𝑓 𝑟𝑎𝑚𝑒_𝑠𝑖𝑧𝑒 else 𝑜𝑠𝑝 in

let 𝑠𝑡𝑘 = < S.𝑐𝑎𝑙𝑙_𝑑𝑒𝑝𝑡ℎ − 1, 𝑛𝑠𝑝, S.𝑐𝑎𝑙𝑙_𝑓 𝑟𝑎𝑚𝑒_𝑙𝑖𝑠𝑡 > in

S{𝑅6← 𝑐𝑠𝑙 [0], 𝑅7← 𝑐𝑠𝑙 [1], 𝑅8← 𝑐𝑠𝑙 [2], 𝑅9← 𝑐𝑠𝑙 [3], 𝐹𝑃 ← 𝑛𝑠𝑝, 𝑃𝐶 ← 𝑟𝑎, 𝑆𝑡𝑎𝑐𝑘 ← 𝑠𝑡𝑘}

• Stack: Removes the top frame 𝑡 𝑓 from the call stack, decrementing the call depth by 1. If the Solana ISA version

supports dynamic stack frames, the stack pointer is updated accordingly.

• Registers: Restores the caller-saved registers 𝑅6 to 𝑅9, the frame pointer 𝐹𝑃 , and the program counter 𝑃𝐶 from

the corresponding fields of the top frame 𝑡 𝑓 .

S.𝑐𝑎𝑙𝑙_𝑑𝑒𝑝𝑡ℎ = 0

S Exit−−−−→ 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 [[𝑅0]]
(Exit-Normal)

S.𝑐𝑎𝑙𝑙_𝑑𝑒𝑝𝑡ℎ > 0 pop_frame(S) = S′

S Exit−−−−→ S′
(Exit-Call)

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

A complete formal semantics of eBPF instruction set architecture for Solana 13

Interpreter. All semantics rules are integrated as a semantics function in Isabelle/HOL, i.e., ‘step : 𝑖𝑛𝑠 ⇒ S ⇒ S’. We

formalize the Solana interpreter as the function ‘interpreter : 𝑛𝑎𝑡 ⇒ 𝑏𝑦𝑡𝑒 𝑙𝑖𝑠𝑡 ⇒ S ⇒ S’ to execute the input smart

contract bytecode (i.e., a list of bytes) by invoking 𝑠𝑡𝑒𝑝 , where the first parameter is a fuel for VM termination.

5 Validation of Semantics

We have manually formalized the complete SBPF instruction set (excluding external calls) in Isabelle/HOL, based on

the original interpreter implementation in Rust. Given the inherent complexity of the SBPF ISA and the potential

nuances of Rust semantics, as discussed in subsection 1.1, there are reasonable concerns about whether our formal

model accurately reflects the behaviour of the original implementation.

To address these concerns and build confidence in the accuracy of our formalization, this section outlines the

validation process of our formal semantics. This validation is achieved through an executable version generated in

OCaml, obtained via the Isabelle/HOL extraction mechanism.

5.1 Validation Framework

We have developed a test framework to validate the executable semantics of our Isabelle/HOL model. The primary

challenge we encountered is that the extracted OCaml code is not easily human-readable and difficult to work with.

Problems. We utilize the Isabelle/HOL extraction mechanism to generate the executable semantics in OCaml. However,

our source Isabelle/HOLmodel relies on the "Word" library to formalize the signed and unsigned semantics of SBPF, which

poses considerable difficulty for efficient extraction. As a result, the Isabelle/HOL extraction translates ‘interpreter :
𝑛𝑎𝑡 ⇒ 𝑏𝑦𝑡𝑒 𝑙𝑖𝑠𝑡 ⇒ S ⇒ S’ into OCaml code that follows a cumbersome and less intuitive style (we call it as a

constructive style). For instance, ‘byte’ is a type synonym of ‘8 word’ in Isabelle/HOL, and its extracted representation

in OCaml is ‘num1 bit0 bit0 bit0 word’.

val interpreter : nat -> num1 bit0 bit0 bit0 word list -> bpf_state -> bpf_state

type num = One | Bit0 of num | Bit1 of num;;

type int = Zero_int | Pos of num | Neg of num;;

type 'a word = Word of int;;

type nat = Zero_nat | Suc of nat;;

Although Isabelle/HOL can extract some types, such as ‘bool’ and ‘list’, into native OCaml types, its code generator

struggles to map more complex types like ‘int’, ‘word’, and ‘nat’ to their corresponding OCaml native types via code-
printing declarations [Dawson 2009]. This limitation complicates the testing of the executable semantics for the SBPF

ISA, as it frequently relies on these types.

To tackle this limitation, existing work [Lochbihler 2018] introduces the "Native_Word" library, which links formal-

ized words in Isabelle/HOL to machine words in target languages (e.g., OCaml). However, our current Isabelle/HOL

implementation is built on the "Word" library, and all proofs depend on its lemmas. Adopting the "Native_Word" library

would require replacing all existing "Word" definitions, leading to additional proof effort: either re-proving all SBPF

properties with "Native_Word" lemmas or proving equivalence between the original "Word" model and using the

modified "Native_Word" model for code extraction.

Solutions. We propose a lightweight and non-invasive approach to relax the limitations of Isabelle/HOL extraction

by introducing adaptations that glue native OCaml types with the types extracted from Isabelle/HOL. To minimize

changes, we divide the glue code into two layers: Isabelle/HOL-level and OCaml-level glue code.

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Shenghao Yuan et al.

• Isabelle/HOL-level glue code: The original extracted OCaml code, makes it highly difficult to validate seman-

tics with the constructive input type. Consequently, a new function ‘interpreter_test : 𝑖𝑛𝑡 ⇒ 𝑖𝑛𝑡 𝑙𝑖𝑠𝑡 ⇒ . . .’,

is introduced in Isabelle/HOL to internally invoke the existing ‘interpreter’ function to perform computations.

This glue code also handles type casting between ‘int’ and other types, such as ‘nat’ and ‘word’, by using

pre-defined functions in Isabelle/HOL (e.g., ‘nat’ translates an integer into a natural number, ‘of_int’ to convert
a Isabelle/HOL ‘int’ into a fixed-size word, and ‘map’ translates ‘𝑖𝑛𝑡 𝑙𝑖𝑠𝑡 ’ to ‘𝑢8 𝑙𝑖𝑠𝑡 ’). Users must ensure that the

type casting is valid, such as always passing a positive integer as the fuel parameter of ‘interpreter_test’. Since
this glue code is implemented in Isabelle/HOL, it can be directly extracted into OCaml.

fun interpreter :: "nat => u8 list => bpf_state => bpf_state" where ...

definition interpreter_test :: "int => int list => ..." where ...

interpreter_test fuel prog ... =

interpreter (nat fuel) (map (𝜆 i. of_int i) prog) ...

• OCaml-level glue code: The ‘interpreter_test’ function provides an interface for testing that only uses ‘int’-

related types (namedℎ𝑜𝑙_𝑖𝑛𝑡 to avoid ambiguity). Consequently, theOCaml-level glue code ‘𝑖𝑛𝑡_𝑜 𝑓 _𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑖𝑛𝑡 ’

focuses on translating between the generated ‘int’ types from Isabelle/HOL and the native ‘int64’ type from the

OCaml standard library, and ‘𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑒𝑟_𝑡𝑒𝑠𝑡_𝑜𝑐𝑎𝑚𝑙 ’ provides a user-friendly interface for OCaml testing.

type hol_int = Zero_int | Pos of num | Neg of num;;

val interpreter_test : hol_int -> hol_int list -> ...

val int_of_standard_int : int64 -> hol_int

val interpreter_test_ocaml : int64 -> int64 list -> ...

let interpreter_test_ocaml fuel prog ... =

interpreter_test (int_of_standard_int fuel) (List.map int_of_standard_int prog) ...

Framework. Our validation framework, illustrated in Figure 5, operates as follows: Given an input test case, the original

Rust implementation of the Solana interpreter, named ‘𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑒𝑟_𝑟𝑢𝑠𝑡 ’, produces an output,𝑂𝑢𝑡𝑝𝑢𝑡1. Simultaneously,

the extracted OCaml function ‘𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑒𝑟_𝑡𝑒𝑠𝑡_𝑜𝑐𝑎𝑚𝑙 ’, along with the glue code, executes the same test case and

produces a second output, 𝑂𝑢𝑡𝑝𝑢𝑡2. If the two results match, the test is valid, demonstrating consistency between the

original interpreter and the formal semantics. If the results differ, the framework identifies an inconsistency between

the low-level Rust code and the high-level Isabelle/HOL model.

5.2 Validation Benchmarks

We conducted two types of benchmarks to validate the semantics: micro-benchmarks at the instruction level and

macro-benchmarks at the program level.

• Micro-benchmarks: validation of single instructions with randomly generated data to assess the one-step

execution of individual SBPF instructions;

• Macro-benchmarks: validation of Solana bytecode programs using the official Solana benchmark suite.

Instruction-level Validation. As shown in Figure 6, the instruction-level validation follows three steps:

• A random SBPF instruction 𝑖𝑛𝑠 is generated;

• 𝑖𝑛𝑠 is executed by both the original 𝑠𝑡𝑒𝑝 function in Rust and the OCaml function step_test (the extracted code

from step, mentioned in Section 4, with glue code);

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

A complete formal semantics of eBPF instruction set architecture for Solana 15

Fig. 5. Validation Framework.

• The results of 𝑠𝑡𝑒𝑝 and step_test are compared to ensure consistency.

To generate random SBPF instructions, consider the procedure for generating a random 32-bit move instruction.

First, we generate a random index for the destination register, and if the second operand is a register, another index

is generated for the source register; otherwise, a 32-bit immediate value is produced. These are then composed into

an assembly instruction, which is compiled into binary format by the Solana assembler. We also generate a random

register map for testing, where registers 𝑅0 − 𝑅9 hold random 64-bit values, and 𝐹𝑃 points to the default stack address.

A valid result is achieved under two conditions: either both ‘𝑠𝑡𝑒𝑝_𝑟𝑢𝑠𝑡 ’ and ‘𝑠𝑡𝑒𝑝_𝑡𝑒𝑠𝑡_𝑜𝑐𝑎𝑚𝑙 ’ fail execution, or both

functions successfully execute and produce identical values in the destination register.

Fig. 6. Instruction-level Validation Framework.

Our instruction-level validation covers ALU, byte-swap, memory load, memory store, and branch instructions. For

memory store instructions, which have side effects on memory, comparing entire memory models is time-consuming.

Therefore, we generate corresponding memory load instructions to read the modified memory cells and compare the

results in the destination register. We exclude CALL and EXIT instructions, as they require a Solana program structure.

Program-level Validation. To validate the combination of instructions within real-world Solana programs, we utilize

the official Solana test suite as input to our validation framework, illustrated in Figure 5. We select 146 out of 160 tests,

covering 114 SBPF normal cases and 32 exception cases. The validation proceeds as follows:

• Normal tests: each test completes successfully in Rust, and our formal model should reach the 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 state,

with both implementations producing identical results.

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Shenghao Yuan et al.

• Exception tests: each test terminates with an error flag, and our formal model should correspondingly end in the

𝐸𝐹𝑙𝑎𝑔 state.

We have to exclude 14 cases that involve external calls, as they require modelling Solana’s built-in system calls,

which are not yet supported in our formal semantics.

5.3 Validation Results

As anticipated, the validation framework proved instrumental in refining our formal SBPF semantics. Throughout the

validation process, we identified some minor issues and some deep potential problems in the initial version of our

formalization, all of which were addressed in the final version.

We first employed the official Solana test suite (macro-benchmark) for validation, as it required minimal additional

preparation. In certain benchmarks, discrepancies arose between the output of the Solana interpreter (Rust) and our

formal model, largely due to minor implementation errors in the formalization. These errors primarily stemmed

from irregularities in unsigned or signed type castings within the SBPF interpreter. For example, the signed 128-

bit multiplication instruction incorrectly applied unsigned casting [[𝑅𝑠]]𝑢128 in our formalization, when the correct

approach required signed casting [[𝑅𝑠]]𝑖128.

ebpf::SHMUL64_REG ... => self.reg[dst] =

(self.reg[dst] ... as i128) // signed type casting

.wrapping_mul(self.reg[src] ... as i128) // signed type casting

.wrapping_shr(64) as u64,

Subsequently, we developed micro-benchmarks and an instruction-level validation framework (see Figure 6). This

framework successfully uncovered additional inconsistencies, arising from fundamental semantic differences between

Rust and Isabelle/HOL. To simplify our explanation, we focus on the modulo (remainder) operator.

Table 1 illustrates four examples of modulo operations in three cases: Rust with signed 16-bit integers, Isabelle/HOL

with the integer library, and Isabelle/HOL with the "Word" library.

Language Rust Isabelle/HOL int Isabelle/HOL Word

Example1 (-11 as i16) % (10 as i16) = -1 (-(11::int)) mod (10::int) = 9 (-(11::i16)) mod (10::i16) = 5

Example2 (-19 as i16) % (10 as i16) = -9 (-(19::int)) mod (10::int) = 1 (-(19::i16)) mod (10::i16) = 7

Example3 (11 as i16) % (-10 as i16) = 1 (11::int) mod (-(10::int)) = -9 (11::i16) mod (-(10::i16)) = 11

Example4 (19 as i16) % (-10 as i16) = 9 (19::int) mod (-(10::int)) = -1 (19::i16) mod (-(10::i16)) = 19

Table 1. Semantics-level differences between Rust and Isabelle/HOL: modulo examples.

In Rust, the modulo operator (%) returns the remainder of a division, with the result sharing the sign of the dividend.

This is because Rust uses truncated division, i.e., the result of the division is truncated toward zero.

In Isabelle/HOL, the modulo operator mod is generic across types. For integers, it follows floor division semantics,

where the division result is rounded toward negative infinity, and the modulo result takes the sign of the divisor,

irrespective of the dividend’s sign. For instance, (-(11::int)) mod (10::int) returns 9, because (-(11::int)) div

(10::int) yields -2, and -2 - (-11) is 9.

The Isabelle/HOL "Word" library’s modulo behaviour is less straightforward and initially produced results inconsistent

with the Rust implementation. To resolve this, we defined a new modulo (and division) function of word types in

Isabelle/HOL to correctly implement truncated division semantics, ensuring alignment with Rust’s behaviour.

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

A complete formal semantics of eBPF instruction set architecture for Solana 17

6 Applications

In this section, we illustrate a few applications of our formal model for Solana. Our goal here is to demonstrate how our

model can be extended to formalize other key components of the SBPF ecosystem and prove essential properties. For

this reason, the applications provided here are intended as examples, with many formal details omitted, since the goal

of this paper is the formalization of SBPF semantics.

The remainder of this section outlines how our formal model can serve as a foundation for:

• Assembler and Disassembler : reusing the syntax of our model to formalize both components and proving the

consistency property of the assembler-disassembler pair;

• Verifier : leveraging the syntax to formalize the Solana verifier, and proving the safety properties of our SBPF

semantics based on this formalized verifier;

• JIT Compiler : reusing the formal semantics to verify the correctness of individual JIT compilation rules for ALU

operations.

6.1 Consistency of Solana Assembler and Disassembler

The SBPF VM has two components: Assembler translates machine-readable SBPF bytecode into human-readable SBPF

assembly syntax, and Disassembler performs the opposite direction. We first formalize this pair in Isabelle/HOL based

on our SBPF syntax: the formal model of Assembler is constructed by the discussion of each SBPF instruction, and the

formal Disassembler is constructed by nested 𝑖 𝑓 -structures to analyse all fields of the SBPF bytecode.

We then prove the consistency property which confirms the correctness of this bidirectional translation, we first

discuss two lemmas:

• Assembler implies Disassembler(Lemma 6.1): given that a list of SBPF assembly instructions is encoded into

binary form, prove that the encoded instructions can always be decoded back to the original assembly code.

• Disassembler implies Assembler(Lemma 6.2): given that a list of SBPF binary instructions is decoded into assembly

form, prove that the decoded instructions can always be re-encoded to reproduce the original binary code.

Lemma 6.1 (Assembler_Implies_Disassembler). If assembler 𝑙_𝑎𝑠𝑚 = ⌊𝑙_𝑏𝑖𝑛⌋, then disassembler 𝑙_𝑏𝑖𝑛 = ⌊𝑙_𝑎𝑠𝑚⌋

Proof. It uses proof by induction over the assembly instruction list 𝑙_𝑎𝑠𝑚: the basic case (𝑙_𝑎𝑠𝑚 is an empty list) is

trivial, another inductive case (𝑙_𝑎𝑠𝑚 is constructed by the head ℎ and the rest list 𝑡𝑙) requires case analysis on each

input SBPF instruction and uses the inductive hypothesis to complete the proof. □

Lemma 6.2 (Disassembler_Implies_Assembler). If disassembler 𝑙_𝑏𝑖𝑛 = ⌊𝑙_𝑎𝑠𝑚⌋, then assembler 𝑙_𝑎𝑠𝑚 = ⌊𝑙_𝑏𝑖𝑛⌋

Proof. The proof begins by induction over the binary instruction list 𝑙_𝑏𝑖𝑛, then case analysis on the nested

𝑖 𝑓 -structures, which rely on the high degree of proof automation of Isabelle/HOL to solve all subgoals. □

Theorem 6.3 (Consistency). assembler 𝑙_𝑎𝑠𝑚 = ⌊𝑙_𝑏𝑖𝑛⌋ ⇐⇒ disassembler 𝑙_𝑏𝑖𝑛 = ⌊𝑙_𝑎𝑠𝑚⌋

Proof. The proof is established directly by applying Lemma 6.1 and Lemma 6.2. □

6.2 Verification of Solana Verifier

The Solana verifier provides basic static checking of input bytecode, e.g., detecting the division-by-zero case when

the instruction is the division with an immediate number. Two notations are explained firstly: 𝐿(𝑝𝑐) represents the
Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Shenghao Yuan et al.

64-binary bytecode of the input program 𝐿 at location (𝑝𝑐 ∗ 8), and 𝐿[𝑝𝑐] represents the decoded assembly instruction

of the bytecode. We also write 𝐿(𝑝𝑐) .𝑋 to access the 𝑋 field of the bytecode. Then the formalization of the verifier is

based on our formal model mentioned in Section 4, and the whole Solana verifier is split into three checking rules:

verifier(𝐿, 𝑠𝑣) def= ∀ 𝑝𝑐, 𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑟_𝑐𝑜𝑚𝑚(𝐿, 𝑝𝑐) ∧ 𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑟_𝑟𝑒𝑔(𝐿, 𝑝𝑐) ∧ 𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑟_𝑖𝑛𝑠 (𝐿, 𝑝𝑐, 𝑠𝑣)

Common Rule. stipulates the bytecode list of the input Solana program is i/ Not empty; ii/ The length of the list is an

integer multiple of the size of each instruction, i.e., an 8-byte Solana bytecode; iii/ Each instruction has a valid opcode.

verifier_comm(𝐿, 𝑝𝑐) def= 𝐿𝑒𝑛𝑔𝑡ℎ(𝐿) ≠ 0 ∧ 𝐿𝑒𝑛𝑔𝑡ℎ(𝐿)%8 = 0 ∧ 𝐿[𝑝𝑐] ∈ 𝑖𝑛𝑠

Register Rule. stipulates for each instruction, the source register could be within the range of [0, 10] in most cases, it

couldn’t be 10 for the call with register instruction. In contrast, the destination register should be within [0, 9] in most

cases. The only exception is the store instruction, in this case, the destination register could be 𝑅10 (i.e., 𝐹𝑃) because

SBPF allows storing a value into the VM stack frame.

verifier_reg(𝐿, 𝑝𝑐) def=
∧{

(0 ≤ 𝐿(𝑝𝑐) .𝑠𝑟𝑐 < 10 ∨ (𝐿(𝑝𝑐) .𝑠𝑟𝑐 = 10 ∧ 𝐿[𝑝𝑐] ≠ CALL_REG _ _))
(0 ≤ 𝐿(𝑝𝑐) .𝑑𝑠𝑡 < 10 ∨ (𝐿(𝑝𝑐) .𝑑𝑠𝑡 = 10 ∧ 𝐿[𝑝𝑐] = ST _ _ _ _))

Instruction Rule. checks the shift-of-range, division-by-zero of related immediate-related instructions, jump-out-of-

branch of jump instructions, and the version of instructions, etc. In particular, 𝑐ℎ𝑒𝑐𝑘_𝑙𝑑𝑑𝑤 ensures that the 𝐿(𝑝𝑐 + 1)
bytecode has all zero for non-immediate fields to avoid invalid instructions.

verifier_ins(𝐿, 𝑝𝑐, 𝑠𝑣) def=
∧



𝐿[𝑝𝑐] = ALU32 𝑙𝑠ℎ/𝑟𝑠ℎ/𝑎𝑟𝑠ℎ _ 𝑖 → 0 ≤ 𝑖 ≤ 31

𝐿[𝑝𝑐] = ALU64 𝑙𝑠ℎ/𝑟𝑠ℎ/𝑎𝑟𝑠ℎ _ 𝑖 → 0 ≤ 𝑖 ≤ 63

𝐿[𝑝𝑐] = MDM32/MDM64/PQR32/PQR64 𝑜𝑝 _ 𝑖 → 𝑖 ≠ 0

𝐿[𝑝𝑐] = Ja 𝑜𝑓𝑠 ∨ JUMP _ _ _ 𝑜𝑓𝑠 → 0 ≤ 𝑝𝑐 + 𝑜𝑓𝑠 + 1 < 𝐿𝑒𝑛𝑔𝑡ℎ(𝐿)/8
𝐿[𝑝𝑐] = PQR32/PQR64 _ _ _→ 𝑠𝑣 ≠ 𝑉1

𝐿[𝑝𝑐] = UHMUL/SHMUL/HOR64 _ _→ 𝑠𝑣 ≠ 𝑉1

𝐿[𝑝𝑐] = ADD_SP 𝑖 → 𝑠𝑣 ≠ 𝑉1

𝐿[𝑝𝑐] = LE _ 𝑖 → 𝑠𝑣 = 𝑉1 ∧ 𝑖 ∈ {16, 32, 64}
𝐿[𝑝𝑐] = NEG32/NEG64 _→ 𝑠𝑣 = 𝑉1

𝐿[𝑝𝑐] = LDDW _ _ _→ 𝑠𝑣 = 𝑉1 ∧ 𝑐ℎ𝑒𝑐𝑘_𝑙𝑑𝑑𝑤 (𝑝𝑐, 𝐿)

Safety of Step. Based on the formal model of the Solana verifier, we verify a simple property: the instruction rule in

the verifier ensures the one-step execution of the Solana interpreter is safe. That is, the step executes beginning from a

normal state, it never goes to the 𝐸𝑟𝑟or state.

Lemma 6.4 (Step Safety). If verifier_ins(𝐿, 𝑝𝑐, S.𝑉𝑒𝑟𝑠𝑖𝑜𝑛) = 𝑇𝑟𝑢𝑒 , then step(𝐿[𝑝𝑐], S) ≠ 𝐸𝑟𝑟

Proof. The proof begins by conducting a case analysis on the assembly instruction 𝐿[𝑝𝑐], then benefits the proof

automation of Isabelle/HOL to solve all subgoals. □

Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

A complete formal semantics of eBPF instruction set architecture for Solana 19

6.3 Solana x86-64 JIT Compiler Proof

The Solana x86-64 JIT compiler is structured as a collection of mini-compilers, each responsible for translating an eBPF

opcode into the corresponding x86-64 binary code, with an outer loop and match-pattern statement orchestrating the

composition of these mini-compilers. In this paper, we focus on verifying a subset of these mini-compilers, specifically

those related to ALU instructions, using our formal SBPF semantics. The full JIT implementation is highly complex,

comprising over 2k lines of Rust code, including a sophisticated fuel consumption algorithm, which would require

significant proof effort to verify comprehensively. We leave it for future work.

From a high-level perspective, we formalize JIT correctness using a stepwise specification approach. We model

abstract machines for both SBPF and x86-64 at the binary level, where the specification defines JIT correctness as

the behavioural equivalence between executing a source BPF instruction and the corresponding target instructions

generated by the JIT. Each step of the SBPF abstract machine corresponds to the function ‘step’ defined in subsection 4.2.

For this approach, a formal binary-level semantics of the x86-64 ISA is required.

x86-64 Binary Semantics. Closely related work of x86-64 semantics in Isabelle/HOL including Sail [Armstrong et al.

2019] and X86_Semantics in AFP [Verbeek et al. 2021] have their limitations: Sail uses bit-level operations to formalize

each x86-64 instruction and it complicates all subsequent proofs required for verifying the correctness of Solana JIT as

SBPF’s semantics is based on word-level operations. Meanwhile, the X86_Semantics in AFP only formalized a small

subset of basic x86 instructions at the assembly level, insufficient for the comprehensive needs of the Solana JIT proof,

and inadequate to fully bridge the gap between binary and assembly semantics.

Consequently, we have developed a new formal binary x86-64 model, along with a decoder-encoder pair in Is-

abelle/HOL, capable of interpreting all 190 target instructions used by the SBPF x86-64 JIT compiler. We have proven

that the x86-64 decoder-encoder pair satisfies the equivalence property, ensuring a bijective relationship between the

binary and assembly representations. This equivalence effectively elevates the JIT correctness proof from the x86-64

binary level to the assembly level, thus profoundly simplifying the verification process. This x86-64 abstract machine

defines the program state S𝑥64 ::= ⟨R𝑥64,M⟩, consisting of a memory model (identical to subsection 4.2) and a x86-64

register map, which associates the 16 x86-64 integer registers with their respective values. The machine’s transition is

defined as S𝑥64
ins−−→ S′

𝑥64
, representing the execution of one x86-64 instruction and the resulting state transition from

S𝑥64 to S′𝑥64. Similarly, we use S𝑥64
𝑙−→ S′

𝑥64
to represent the sequential execution of a list of instructions 𝑙 .

Mini-JIT Proof: ALU. We begin by introducing the function freg : 𝑅𝑆𝐵𝑃𝐹 → 𝑅𝑥64, which, faithful to the original code,

maps each SBPF register to its corresponding x86-64 register.

freg (𝑟)
def

= match 𝑟 with

𝑅0 ⇒ 𝑟𝑎𝑥 | 𝑅1 ⇒ 𝑟𝑠𝑖 | 𝑅2 ⇒ 𝑟𝑑𝑥 | 𝑅3 ⇒ 𝑟𝑐𝑥 | 𝑅4 ⇒ 𝑟8 | 𝑅5 ⇒ 𝑟9 | 𝑅6 ⇒ 𝑟12 | 𝑅7 ⇒ 𝑟13 |

𝑅8 ⇒ 𝑟14 | 𝑅9 ⇒ 𝑟15 | 𝐹𝑃 ⇒ 𝑟𝑏𝑝 | 𝑃𝐶 ⇒ 𝑟𝑖𝑝

Leveraging the decoder-encoder equivalence proof for the x86-64 architecture, the mini JIT compiler for individual

SBPF ALU instructions can be abstracted as the function jitins : 𝑖𝑛𝑠𝑆𝐵𝑃𝐹 → 𝑖𝑛𝑠𝑥64 𝑙𝑖𝑠𝑡 , which translates each SBPF ALU

instruction into a list of x86-64 instructions according to JIT compilation rules. For example, the SBPF 64-bit addition

between registers is mapped to the x86-64 64-bit addition instruction addq, with the registers appropriately mapped

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Shenghao Yuan et al.

using freg . Similarly, the SBPF 64-bit addition with an immediate value is translated into two x86-64 instructions: a 64-bit

move instruction movq to load the immediate value into the temporary register 𝑟10, followed by an addq instruction.

jitmini (𝑖𝑛𝑠)
def

= match 𝑖𝑛𝑠 with

ALU64 𝑎𝑑𝑑 𝑟𝑑 𝑟𝑠 ⇒ [addq 𝑓𝑟𝑒𝑔 (𝑟𝑑) 𝑓𝑟𝑒𝑔 (𝑟𝑠)] |

ALU64 𝑎𝑑𝑑 𝑟𝑑 𝑖 ⇒ [movq 𝑟10 𝑖; addq 𝑓𝑟𝑒𝑔 (𝑟𝑑) 𝑟10] |

. . .

The correctness of the mini JIT compiler is defined as a forward simulation between two abstract machines for proof

simplification, because one SBPF instruction may be translated to many x86-64 instructions.

Definition 6.5 (Mini-JIT Correctness). A JIT compiler emits correct target instructions for a given SBPF ALU instruction

if the execution of the emitted instructions results in a target state that preserves the simulation relation ∼.

∀ins. S𝑆𝐵𝑃𝐹
ins−−→ S′𝑆𝐵𝑃𝐹 ∧ S𝑆𝐵𝑃𝐹 ∼ S𝑥64 =⇒ ∃ S′𝑥64 . S𝑥64

jit𝑚𝑖𝑛𝑖 (𝑖𝑛𝑠)−−−−−−−−−−→ S′𝑥64 ∧ S′𝑆𝐵𝑃𝐹 ∼ S′𝑥64

Given that the ALU instructions only affect register values, we can establish the relation ∼ as a direct correspondence
between the register value in the SBPF state and the mapped register in the x86-64 state, i.e., ∼def= ∀ 𝑟 . [[𝑟]] = [[𝑓𝑟𝑒𝑔 (𝑟)]].

7 Evaluation

This section evaluates our formalization effort and clarifies the limitations of the methodology proposed in this paper.

7.1 Implementation

As there is no official counting tool for Isabelle/HOL, we use a common ‘Count Lines of Code’ tool named CLoC to

count Isabelle/HOL, Rust, and OCaml implementation. In particular, we use the flag ‘–force-lang="OCaml"’ to count

our Isabelle/HOL code because both Isabelle/HOL and OCaml use ‘(* *)’ for comments.

Formal Verification. Table 2 shows lines-of-code statistics. The main modules (i.e., assembler, disassembler, verifier,

and interpreter) of Solana VM consist of around 2k lines of code in Rust and the Solana x86-64 JIT compiler has more

than 2k lines of Rust implementation. The Isabelle/HOL development comprises about 2.7k specifications of the main

components of Solana VM, plus around 0.4k lines of proof. As the Solana JIT is quite complex, we only formalize a

small part of the Solana JIT, around 1k lines of specification along with more than 1.8k lines of proof.

The entire verification and validation effort took around 11 person-months, of which 60% were spent on the SBPF

verification, 30% on x86-64 binary formalization, 10% on the validation framework. We spent a lot of verification effort

on the target x86-64 language of the Solana JIT compiler, including about 2.6k lines of specification and 5k lines of

proof, because the Solana x86-64 JIT compiler generates the binary code using various x86-64 encoding patterns, plus

the complexity of CISC-styled instruction formats.

Validation Framework. Our validation framework is implemented using a combination of OCaml and Rust. It includes

approximately 100 lines of OCaml code for data format processing and around 600 lines for random instruction

generation and testing. To address the limitations of the existing Isabelle/HOL extraction mechanism, our lightweight

solution requires only minimal adjustments: the Isabelle/HOL glue code consists of three functions totalling 11 lines,

while the OCaml glue code is composed of five functions, comprising 20 lines in total.

Manuscript submitted to ACM

https://github.com/AlDanial/cloc

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

A complete formal semantics of eBPF instruction set architecture for Solana 21

Component Language Lines (KLOC) Effort (.pm)

Solana VM (excluded JIT) + JIT Compiler Rust 2.0 + 2.1

SBPF Syntax Isabelle/HOL 0.9 0.5

SBPF Semantics Isabelle/HOL 0.9 1.5

SBPF Verifier + Safety Isabelle/HOL 0.2 + 0.1 1

SBPF Assembler-Disassembler + Consistency Isabelle/HOL 0.7 + 0.3 1

SBPF JIT Isabelle/HOL 1.0 1

SBPF JIT proof Isabelle/HOL 1.8 1

SBPF x86-64 Specification Isabelle/HOL 2.6 1.5

SBPF x86-64 Proof Isabelle/HOL 5.0 2.5

SBPF Validation Framework OCaml + Rust 0.1 + 0.6 1

SBPF Executable Semantics OCaml 4.9

Table 2. Code and proof statistics. pm stands for person-months.

For comparison, the extracted code of SBPF executable semantics is about 5k lines of OCaml implementation,

significantly more complex than both the Isabelle/HOL specification and the original Rust implementation. This is

primarily due to two factors: first, the extracted code includes numerous definitions of basic types and associated

operations, e.g., natural numbers 𝑛𝑎𝑡 and integers 𝑖𝑛𝑡 . Second, the extracted code follows a constructive style, which,

while correct, is less human-readable. For example, the Isabelle/HOL implementation of the interpreter function spans

19 lines, while the corresponding generated OCaml code expands to 53 lines.

Report to the Solana Community. During the formalization of SBPF semantics, we discovered a potential issue that

could lead to illegal behaviour in the Solana interpreter and JIT compiler. Specifically, this issue allowed Solana_v2-

specific instructions, such as LDDW and HOR64, to be executed across all VM versions, bypassing version constraints. The

root cause was the absence of version-checking mechanisms in both the interpreter and JIT.

//verifier.rs

ebpf::HOR64_IMM if !sbpf_version.enable_lddw() => {},

//interpreter.rs or jit.rs

ebpf::HOR64_IMM => { /* the wrong version: lost version checking */

/* the correct version:

ebpf::HOR64_IMM if !self.executable.get_sbpf_version().enable_lddw() => { */

Additionally, our verification of the Solana assembler-disassembler pair identified another issue: the source register

index range constraint was missing, which compromised the consistency property.

Both issues, along with proposed fixes, were reported to the Solana community, where they were confirmed and

have since been addressed in the latest release.

7.2 Lessons Learned

We clarify the prospects and limitations of the methodology proposed in the paper and its application to the Solana VM.

Our Goal. The methodology aims at providing the first and most complete semantics foundation for the SBPF ISA in

Isabelle/HOL. It is the main contribution of this paper.

External Calls. While we formalize the internal function call mechanism using the function call map, our SBPF

semantics does not include a formalization of Solana’s external system APIs. We choose to trust these APIs, as they are

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Shenghao Yuan et al.

less prone to errors. The external APIs include three printing functions (which print the last three arguments, print a

string, and print five arguments in hexadecimal format, respectively), one function for aggregating five arguments into

a single ‘u64’, and two functions, memfrob and strcmp, both originating from the C programming language.

Application Limitations. Regarding its application to the Solana eBPF VM, we first provide a semantics validation

framework to relax the gap between our high-level specification and the original low-level Rust implementation. Our

benchmarks reuse the test suite of Solana but exclude the system call cases.

Then we apply our semantics to formalize the main modules of the Solana VM and prove some key properties of

those modules. For the Solana x86-64 JIT compiler, we only provide the formalism of binary semantics of the target

x86-64 ISA and prove that some ALU instructions could be compiled correctly into the target binary code. We made this

choice as the code size of the JIT compiler is comparable to the rest components of Solana but the level of complexity is

much higher than the rest, and be another verification project in its own right.

Extraction Limitations. Finally, we trust the Isabelle/HOL extraction mechanism. The Isabelle/HOL extractor could

go wrong to render the final object code incorrect, but its correctness is beyond our scope. The alternative solution is to

present a compiler to either extract Rust from Isabelle/HOL specification or translate Rust to Isabelle/HOL. Proving the

correctness of such a compiler in Isabelle/HOL would also be a non-trivial verification task.

However, we believe that these two last limitations could be relaxed once we complete the verification of SBPF

x86-64 JIT compiler and the Rust2Isabelle/HOL transilper. Essentially, the last mile of our journey toward two complete

compilers would reuse our x86-64 binary semantics to formalize the rest part of x86-64 JIT compiler and develop a

trusted deep embedding way to express Rust code in Isabelle/HOL.

8 Related Work

Many related projects have hosted a formal semantics of eBPF as their main contribution or as part of their infrastructure.

This section reviews research efforts related to our approach and compares it to our formal semantics based on three

directions that reflect the primary contributions of our work: the completeness of ISA, the entire VM application, and

the validation gap.

The Jitk framework [Wang et al. 2014] uses Coq to implement and verify the correctness of a JIT compiler for the

classic Berkeley Packet Filter language (not eBPF) in the Linux kernel. Jitk translates the BPF bytecode into CompCert

and leverages the CompCert backend to generate target code. The classic BPF ISA of Jitk is much more limited than ours.

It only has two registers and describes the semantics of 43 instructions, while our semantics covers all 116 instructions

in the SBPF ISA. The Jitk compiler is extracted to OCaml implementation using the Coq extraction mechanism. Our

executable code uses the Isabelle/HOL extraction, similar to Coq, and we additionally provide sufficient validation to

enhance the confidence of our formal semantics.

JitSynth [Van Geffen et al. 2020] is a tool designed for synthesizing verified JITs for in-kernel DSLs, and it has been

applied to synthesize a JIT compiler from eBPF to RISC-V. JitSynth only considers a subset of eBPF ISA (87 of the 115

instructions), their work doesn’t aim for completeness of semantics, one of our primary goals.

Serval [Nelson et al. 2019] is a framework that enables scalable verification for systems code via symbolic evaluation.

It formalizes the semantics of the eBPF ALU instructions in Rosette [Torlak and Bodik 2013], a solver-aided programming

language for program synthesis and verification based on symbolic execution. The Serval framework includes a checker

for eBPF JIT compilers to verify the determinism property of JIT compilers.

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

A complete formal semantics of eBPF instruction set architecture for Solana 23

Jitterbug [Nelson et al. 2020] provides a framework with a specification of JIT correctness and generates automated

proofs for various real-world Linux eBPF JIT compilers. Jitterbug extends Serval to support the semantics of a large

subset of eBPF ISA in Rosette. Jitterbug mainly focuses on the JITs components of eBPF, and there is also no verification

or validation between its formal JIT model and the extracted unverified C code.

K2 [Xu et al. 2021] is a compiler that optimizes eBPF bytecode with formal correctness and safety guarantees. It

currently only handles a subset of eBPF ISA, including ALU instructions, memory instructions, and eBPF call instructions.

PREVAIL [Gershuni et al. 2019] is an eBPF verifier based on abstract interpretation implemented in C++, which

supports more program structures, such as loops, and efficiently outperforms the standard Linux verifier. It supports

most of the eBPF ISA features (except for the internal calls, etc.), and there is no mechanized semantics for the eBPF ISA.

A formal range analysis of the Linux eBPF verifier is proposed [Sanjit and Hovav 2023], but it only considers most

arithmetic instructions and doesn’t discuss the arithmetic multiplication. Agni [Vishwanathan et al. 2023] is another

formal range analysis of the eBPF verifier, and it provides the semantics of all ALU and jump instructions of the eBPF

ISA. For the soundness proof of the range analysis, Agni generates the first-order logic formula from the verifier’s C

source code and uses the Z3 SMT solver [de Moura and Bjørner 2008] for checking formulas.

To the best of our knowledge, the most closely related work is the CertrBPF project [Yuan et al. 2022, 2023; Zandberg

et al. 2022], which introduces a formally verified eBPF VM for the IoT operating system RIOT-OS, developed in Coq,

with an equivalent C implementation extracted using an end-to-end verification workflow. CertrBPF formalizes all

instructions of RIOT-OS eBPF, a variant of eBPF that includes a substantial subset of the Linux eBPF ISA, and proves

the safety of both the verifier and the interpreter. A follow-up work, CertrBPF-JIT [Yuan et al. 2024], extends this by

providing a verified JIT compiler for the RIOT-OS eBPF VM, also formalized in Coq. However, this work is currently

limited to the ARM architecture and supports only a small subset of arithmetic instructions. In contrast to CertrBPF, our

work offers the first complete formal semantics of the SBPF ISA and further formalizes the assembler-disassembler pair,

accompanied by a consistency proof. Both CertrBPF and our work trust the external calls. While CertrBPF presents

an innovative end-to-end theorem from Coq to C, it doesn’t discuss if its Coq formalization faithfully describes the

behaviours of the original implementation. Our approach includes extensive testing to validate our Isabelle/HOL model,

addressing this gap in CertrBPF’s methodology.

9 Conclusion

In this paper, we have presented the first complete formal semantics of Solana eBPF binary instructions to date, and

have thoroughly validated it using a novel testing framework and applied it by formalizing several Solana components

along with the proofs of the key properties. All have been mechanically verified in Isabelle/HOL.

We are carrying on the following research:

Formally verified JIT compiler of SBPF. The Solana eBPF VM includes a x86-64 JIT compiler that translates all SBPF

instructions into x86-64 binary. We are formalizing the whole JIT compiler in Isabelle/HOL, and the next step is to prove

the semantics preservation theorem of this JIT compiler. One of the most challenging parts is to prove the correctness

of the compute units consumption algorithm.

Rust2Isabelle/HOL verified compiler. The Solana eBPF VM is implemented in Rust, to fill the gap between Rust and

Isabelle/HOL, one way is to design a code generator to deeply embed the Rust (intermediate) representation into

Isabelle/HOL definition in a syntax-directed manner, then to give a verified lifting from this deep embedding syntax to

high-level Isabelle/HOL specification.

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Shenghao Yuan et al.

Data-Availability Statement

The source code and proofs of our work, its generated code and benchmark data are available to the OOPSLA’25 review

committee on an anonymized repository [Anonymised 2024]. We clarify:

• Nature: The artifact includes

– Isabelle/HOL code: the semantics model of SBPF ISA, the formalization of SBPF verifier, assembler, disas-

sembler, interpreter, (part) JIT compiler, x86-64 binary semantics and related proofs.

– OCaml + Rust code: the extracted executable semantics in OCaml, and the original Solana eBPF VM in Rust,

and our validation framework in Rust.

– Makefile code: a makefile script to start the Isabelle/HOL project, validate semantics, and perform code and

proof statistics.

• Limitations: The artifact is a zip file instead of an entire VM.

– Libraries dependent: It relies on some basic libraries which require users to install them manually, e.g., the

Isabelle/HOL software, the OCaml environment, and the Count lines of code tool ‘CLoC’, etc.

– Support OS: We only test our artifact on two OS environments.

∗ Windows 11 + WSL2 (Ubuntu 22.04 LTS)

∗ Ubuntu 22.04 LTS

• Artifact Evaluation: Our artifact will be submitted for Artifact Evaluation.

References
Elvira Albert, Samir Genaim, Daniel Kirchner, and Enrique Martin-Martin. 2023. Formally Verified EVM Block-Optimizations. In Computer Aided

Verification, Constantin Enea and Akash Lal (Eds.). Springer Nature Switzerland, Cham, 176–189.

Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. 2018. Towards verifying ethereum smart contract bytecode in Isabelle/HOL. In

Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs (Los Angeles, CA, USA) (CPP 2018). Association for

Computing Machinery, New York, NY, USA, 66–77. https://doi.org/10.1145/3167084

Anonymised. 2024. A complete formal semantics of eBPF instruction set architecture for Solana VM. https://anonymous.4open.science/r/SBPF-EC62/

Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon

French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. 2019. ISA semantics for ARMv8-a, RISC-v, and CHERI-MIPS.

Proc. ACM Program. Lang. 3, POPL, Article 71 (Jan. 2019), 31 pages. https://doi.org/10.1145/3290384

BoredPerson. 2024. Fix JIT second level defence. https://github.com/solana-labs/rbpf/pull/557

Franck Cassez, Joanne Fuller, Milad K. Ghale, David J. Pearce, and Horacio M. A. Quiles. 2023. Formal and Executable Semantics of the Ethereum Virtual

Machine in Dafny. In Formal Methods, Marsha Chechik, Joost-Pieter Katoen, and Martin Leucker (Eds.). Springer International Publishing, Cham,

571–583.

Siwei Cui, Gang Zhao, Yifei Gao, Tien Tavu, and Jeff Huang. 2022. VRust: Automated Vulnerability Detection for Solana Smart Contracts. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security (Los Angeles, CA, USA) (CCS ’22). Association for Computing Machinery,

New York, NY, USA, 639–652. https://doi.org/10.1145/3548606.3560552

Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram S. Adve, and Grigore Roşu. 2019. A complete formal semantics of x86-64 user-level

instruction set architecture. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (Phoenix, AZ,

USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 1133–1148. https://doi.org/10.1145/3314221.3314601

Jeremy Dawson. 2009. Isabelle Theories for Machine Words. Electronic Notes in Theoretical Computer Science 250, 1 (2009), 55–70. https://doi.org/10.1016/

j.entcs.2009.08.005 Proceedings of the Seventh International Workshop on Automated Verification of Critical Systems (AVoCS 2007).

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction and Analysis of Systems, C. R.
Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 337–340.

Dxo, Mate Soos, Zoe Paraskevopoulou, Martin Lundfall, and Mikael Brockman. 2024. Hevm, a Fast Symbolic Execution Framework for EVM Bytecode. In

Computer Aided Verification, Arie Gurfinkel and Vijay Ganesh (Eds.). Springer Nature Switzerland, Cham, 453–465.

Matt Fleming. 2017. A Thorough Introduction to eBPF.

Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska, Jorge A. Navas, Noam Rinetzky, Leonid Ryzhyk, and Mooly Sagiv. 2019. Simple and

Precise Static Analysis of Untrusted Linux Kernel Extensions. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 1069–1084. https://doi.org/10.1145/

Manuscript submitted to ACM

https://doi.org/10.1145/3167084
https://anonymous.4open.science/r/SBPF-EC62/
https://doi.org/10.1145/3290384
https://github.com/solana-labs/rbpf/pull/557
https://doi.org/10.1145/3548606.3560552
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1016/j.entcs.2009.08.005
https://doi.org/10.1016/j.entcs.2009.08.005
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/3314221.3314590

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

A complete formal semantics of eBPF instruction set architecture for Solana 25

3314221.3314590

Sudhanshu Goswami. 2005. An introduction to KProbes. https://lwn.net/Articles/132196/

E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth, B. Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu. 2018. KEVM: A Complete

Formal Semantics of the Ethereum Virtual Machine. In 2018 IEEE 31st Computer Security Foundations Symposium (CSF). IEEE Computer Society, Los

Alamitos, CA, USA, 204–217. https://doi.org/10.1109/CSF.2018.00022

Yoichi Hirai. 2017. Defining the Ethereum Virtual Machine for Interactive Theorem Provers. In Financial Cryptography and Data Security, Michael

Brenner, Kurt Rohloff, Joseph Bonneau, Andrew Miller, Peter Y.A. Ryan, Vanessa Teague, Andrea Bracciali, Massimiliano Sala, Federico Pintore, and

Markus Jakobsson (Eds.). Springer International Publishing, Cham, 520–535.

Meta Incubator. 2018. A high performance layer 4 load balancer. https://github.com/facebookincubator/katran

Jiao Jiao, Shuanglong Kan, Shang-Wei Lin, David Sanan, Yang Liu, and Jun Sun. 2020. Semantic Understanding of Smart Contracts: Executable

Operational Semantics of Solidity. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 1695–1712.

https://doi.org/10.1109/SP40000.2020.00066

Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107–115. http://xavierleroy.org/publi/compcert-CACM.pdf

Ximeng Li, Zhiping Shi, Qianying Zhang, Guohui Wang, Yong Guan, and Ning Han. 2019. Towards Verifying Ethereum Smart Contracts at Intermediate

Language Level. In Formal Methods and Software Engineering, Yamine Ait-Ameur and Shengchao Qin (Eds.). Springer International Publishing, Cham,

121–137.

Andreas Lochbihler. 2018. Fast Machine Words in Isabelle/HOL. In Interactive Theorem Proving, Jeremy Avigad and Assia Mahboubi (Eds.). Springer

International Publishing, Cham, 388–410.

Diego Marmsoler and Achim D. Brucker. 2021. A Denotational Semantics of Solidity in Isabelle/HOL. In Software Engineering and Formal Methods, Radu
Calinescu and Corina S. Păsăreanu (Eds.). Springer International Publishing, Cham, 403–422.

Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New Architecture for User-level Packet Capture. In Usenix Winter Conference, Vol. 46.
USENIX, San Diego, California, USA, 259–270.

Microsoft. 2019. eBPF implementation that runs on top of Windows. https://github.com/microsoft/ebpf-for-windows

Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, and Xi Wang. 2019. Scaling Symbolic Evaluation for Automated Verification

of Systems Code with Serval. In Proceedings of the 27th ACM Symposium on Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19).
Association for Computing Machinery, New York, NY, USA, 225–242. https://doi.org/10.1145/3341301.3359641

Luke Nelson, Jacob Van Geffen, Emina Torlak, and Xi Wang. 2020. Specification and verification in the field: Applying formal methods to BPF just-in-time

compilers in the Linux kernel. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX Association, USA,

41–61. https://www.usenix.org/conference/osdi20/presentation/nelson

Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. 2002. Isabelle/HOL: a proof assistant for higher-order logic. Springer-Verlag, Berlin, Heidelberg.
Daejun Park, Yi Zhang, and Grigore Rosu. 2020. End-to-End Formal Verification of Ethereum 2.0 Deposit Smart Contract. In Computer Aided Verification,

Shuvendu K. Lahiri and Chao Wang (Eds.). Springer International Publishing, Cham, 151–164.

Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore Roşu. 2018. A formal verification tool for Ethereum VM bytecode. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (Lake Buena

Vista, FL, USA) (ESEC/FSE 2018). Association for Computing Machinery, New York, NY, USA, 912–915. https://doi.org/10.1145/3236024.3264591

Bhat Sanjit and Shacham Hovav. 2023. Formal Verification of the Linux Kernel eBPF Verifier Range Analysis. https://sanjit-bhat.github.io/assets/pdf/ebpf-

verifier-range-analysis22.pdf

Kudelski Security. 2019. Solana Labs Architectural Security Review and Report. https://kudelskisecurity.com/wp-content/uploads/Solana-

LabsArchitectural-Security-Review-andReport.pdf

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen. 2010. x86-TSO: a rigorous and usable programmer’s model

for x86 multiprocessors. Commun. ACM 53, 7 (July 2010), 89–97. https://doi.org/10.1145/1785414.1785443

Sven Smolka, Jens-Rene Giesen, Pascal Winkler, Oussama Draissi, Lucas Davi, Ghassan Karame, and Klaus Pohl. 2023. Fuzz on the Beach: Fuzzing Solana

Smart Contracts. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security (Copenhagen, Denmark) (CCS ’23).
Association for Computing Machinery, New York, NY, USA, 1197–1211. https://doi.org/10.1145/3576915.3623178

Solana-labs. 2018. solana rbpf. https://github.com/solana-labs/rbpf

Solana-labs. 2024. Fix callx. https://github.com/solana-labs/rbpf/pull/583

Dave Thaler. 2024. BPF Instruction Set Architecture (ISA) draft-ietf-bpf-isa-04. https://datatracker.ietf.org/doc/draft-ietf-bpf-isa/

Emina Torlak and Rastislav Bodik. 2013. Growing solver-aided languages with rosette. In Proceedings of the 2013 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming & Software (Indianapolis, Indiana, USA) (Onward! 2013). Association for Computing Machinery,

New York, NY, USA, 135–152. https://doi.org/10.1145/2509578.2509586

Jacob Van Geffen, Luke Nelson, Isil Dillig, Xi Wang, and Emina Torlak. 2020. Synthesizing JIT Compilers for In-Kernel DSLs. In Computer Aided Verification,
Shuvendu K. Lahiri and Chao Wang (Eds.). Springer International Publishing, Cham, 564–586.

Freek Verbeek, Abhijith Bharadwaj, Joshua Bockenek, Ian Roessle, Timmy Weerwag, and Binoy Ravindran. 2021. X86 instruction semantics and basic

block symbolic execution. https://isa-afp.org/entries/X86_Semantics.html, Formal proof development.

Harishankar Vishwanathan, Matan Shachnai, Srinivas Narayana, and Santosh Nagarakatte. 2023. Verifying the Verifier: eBPF Range Analysis Verification.

In Computer Aided Verification, Constantin Enea and Akash Lal (Eds.). Springer Nature Switzerland, Cham, 226–251.

Manuscript submitted to ACM

https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/3314221.3314590
https://lwn.net/Articles/132196/
https://doi.org/10.1109/CSF.2018.00022
https://github.com/facebookincubator/katran
https://doi.org/10.1109/SP40000.2020.00066
http://xavierleroy.org/publi/compcert-CACM.pdf
https://github.com/microsoft/ebpf-for-windows
https://doi.org/10.1145/3341301.3359641
https://www.usenix.org/conference/osdi20/presentation/nelson
https://doi.org/10.1145/3236024.3264591
https://sanjit-bhat.github.io/assets/pdf/ebpf-verifier-range-analysis22.pdf
https://sanjit-bhat.github.io/assets/pdf/ebpf-verifier-range-analysis22.pdf
https://kudelskisecurity.com/wp-content/uploads/Solana-LabsArchitectural-Security-Review-andReport.pdf
https://kudelskisecurity.com/wp-content/uploads/Solana-LabsArchitectural-Security-Review-andReport.pdf
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/3576915.3623178
https://github.com/solana-labs/rbpf
https://github.com/solana-labs/rbpf/pull/583
https://datatracker.ietf.org/doc/draft-ietf-bpf-isa/
https://doi.org/10.1145/2509578.2509586
https://isa-afp.org/entries/X86_Semantics.html

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Shenghao Yuan et al.

Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chlipala, and Zachary Tatlock. 2014. Jitk: A Trustworthy In-Kernel Interpreter Infrastructure.

In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14). USENIX Association, Broomfield, CO, 33–47. https:

//www.usenix.org/conference/osdi14/technical-sessions/presentation/wang_xi

Yuepeng Wang, Shuvendu Lahiri, Shuo Chen, Rong Pan, Isil Dillig, Cody Born, and Immad Naseer. 2019. Formal Specification and Verification of Smart

Contracts for Azure Blockchain. https://www.microsoft.com/en-us/research/publication/formal-specification-and-verification-of-smart-contracts-

for-azure-blockchain/

Qiongwen Xu, Michael D. Wong, Tanvi Wagle, Srinivas Narayana, and Anirudh Sivaraman. 2021. Synthesizing safe and efficient kernel extensions

for packet processing. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference (Virtual Event, USA) (SIGCOMM ’21). Association for Computing

Machinery, New York, NY, USA, 50–64. https://doi.org/10.1145/3452296.3472929

Shenghao Yuan, Frédéric Besson, and Jean-Pierre Talpin. 2024. End-to-End Mechanized Proof of a JIT-Accelerated eBPF Virtual Machine for IoT. In

Computer Aided Verification, Arie Gurfinkel and Vijay Ganesh (Eds.). Springer Nature Switzerland, Cham, 325–347.

Shenghao Yuan, Frédéric Besson, Jean-Pierre Talpin, Samuel Hym, Koen Zandberg, and Emmanuel Baccelli. 2022. End-to-End Mechanized Proof of an eBPF

Virtual Machine for Micro-controllers. In Computer Aided Verification, Sharon Shoham and Yakir Vizel (Eds.). Springer International Publishing, Cham,

293–316.

Shenghao Yuan, Benjamin Lion, Frédéric Besson, and Jean-Pierre Talpin. 2023. Making an eBPF Virtual Machine Faster on Microcontrollers: Verified

Optimization and Proof Simplification. In Dependable Software Engineering. Theories, Tools, and Applications, Holger Hermanns, Jun Sun, and Lei Bu

(Eds.). Springer Nature Singapore, Singapore, 385–401.

Koen Zandberg, Emmanuel Baccelli, Shenghao Yuan, Frédéric Besson, and Jean-Pierre Talpin. 2022. Femto-Containers: Lightweight Virtualization and Fault

Isolation for Small Software Functions on Low-Power IoT Microcontrollers. In Proceedings of the 23rd ACM/IFIP International Middleware Conference
(Quebec, QC, Canada) (Middleware ’22). Association for Computing Machinery, New York, NY, USA, 161–173. https://doi.org/10.1145/3528535.3565242

Jingyi Emma Zhong, Kevin Cheang, Shaz Qadeer, Wolfgang Grieskamp, Sam Blackshear, Junkil Park, Yoni Zohar, Clark Barrett, and David L. Dill. 2020.

The Move Prover. In Computer Aided Verification, Shuvendu K. Lahiri and Chao Wang (Eds.). Springer International Publishing, Cham, 137–150.

Manuscript submitted to ACM

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wang_xi
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wang_xi
https://www.microsoft.com/en-us/research/publication/formal-specification-and-verification-of-smart-contracts-for-azure-blockchain/
https://www.microsoft.com/en-us/research/publication/formal-specification-and-verification-of-smart-contracts-for-azure-blockchain/
https://doi.org/10.1145/3452296.3472929
https://doi.org/10.1145/3528535.3565242

	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Contributions

	2 Background
	2.1 BPF and Linux eBPF
	2.2 Solana eBPF

	3 Overview
	4 Formalization of SBPF Semantics
	4.1 Syntax
	4.2 Semantics

	5 Validation of Semantics
	5.1 Validation Framework
	5.2 Validation Benchmarks
	5.3 Validation Results

	6 Applications
	6.1 Consistency of Solana Assembler and Disassembler
	6.2 Verification of Solana Verifier
	6.3 Solana x86-64 JIT Compiler Proof

	7 Evaluation
	7.1 Implementation
	7.2 Lessons Learned

	8 Related Work
	9 Conclusion
	References

